Introduction to Matlab
+

Mathematical aspects of bilinear factor models

(PCA and PLS)

Frans van den Berg (last modifications September 22, 2007)

fb@“fe ku.dk University of Copenhagen, Faculty of Life Sciences
Department of Food Science

Quality and Technology, Spectroscopy and Chemometrics Group

Rolighedsvej 30 (Room T 447)
DK-1958 Frederiksberg-C
Denmark

This document + programming code is available form
www.models.life.ku.dk

Contents

Introduction to basic Matlab with computer code

- Introduction page - 02
- Matlab environment - 02
- Matlab commands - 04
- Scripts, functions and plotting - 11
- Manipulating Images - 19
- Importing data from The Unscrambler, LatentiX

and MS-Excel into Matlab - 20
- The “path” and third party products - 23
- More reading material - 27

Transparencies (+ some telegram-style explanation)
- Principal Component Analysis - 30
- Partial Least Squares regression - 58

Practicing Matlab with factor models

- Linear Algebra / PCA -77
- Regression / PLS -79
- NIR with temperature effects - 80
- Basic Statistics -85
- Linear Regression - 88
Transparencies Linear Algebra -91
Transparencies Basic Statistics - 98

Introduction to Matlab + PCA and PLS - LIFE/KU

Introduction

Two titles = two aims: 1) to get a quick introduction to the
computer program Matlab (see www.mathworks.com); 2) to get some
insight into the bilinear factor models Principal Component Analysis
(PCA) and Partial Least Squares (PLS) regression, focusing on the
mathematics and numerical aspects rather than how's and why's of
data analysis practice. For the latter part it is assumed (but not
absolutely necessary) that the reader is already familiar with these
methods. It also assumes you have had some preliminary experience
with linear/matrix algebra.

This introduction is based on Matlab releases 7/14 (but the
difference with older releases is insignificant for the scope of this
introductory; exercises will work with any of the resent Matlab
releases). The computer exercise material can be found at
www.models.life.ku.dk.

Matlab environment

the Matlab command editor, with the “>>" command
prompt. Behind this prompt you can type in a huge number MATLAB

R2006a

Let us start up the Matlab environment. This will open } I
i

of commands that will perform a multitude of different
(mainly numerical and graphical) operations, some of which will be
explained below. This same prompt will be used in this document to
mark a Matlab statement. Matlab commands are further “coded” by
the italic font.

Thus, to get help, go to the Matlab windows and type

>= help

If you end this line by pressing [enter], Matlab will respond with some
lines of information popping up in the Matlab window (never mind
what-is-what for now).

The figure below shows the Matlab program workspace or environment
(a similar “control panel” should have appeared on your computer
screen already, with slight differences dependent on the
version/release you are working in).

Introduction to Matlab + PCA and PLS - LIFE/KU -2 -

<) MATLAB CEX

File Edit Debug Desktop Window Help «—
D ﬁ 5: @x) e “ ﬁ’ @ @ Current Directory: | C'WATLABWwork «—g@ v G
Shortcuts [2] How to Add [2] What's New
LIl Command Window a x
LEREES e | B st
To get started, select MATLAE Help or Demos from the Help mem
MNarme Value Class ——
X 09501 0486 0.4... double
IE‘?b [>> X = rand(3,3)
X =
0.9501 0.4860 0.4565
0.2311 0.8913 0.0185
jif L 0.6068 0.7621 0.8214
Current Directory | workspace |[¢—C
1 >>| «—d
(—di 7 x
TIOL I ()
e |
normib) 2
norm(a)
1/normia)
1~2+2°2+43"2
sqre(14)
norm(a)
which hoxplot
which box
F-%-- 5/19/06 9:53 AM --% l
X = rand(3,3) v |
3] @ ||s £

What do we have?

a)

b)

c)
d)

e)

f)

g)

This is the window where Matlab commands are executed. You
can type many different commands (e.g. “help”) and Matlab will
react with a response by showing the result, opening a new
figure window, showing an error message if the command was
incorrect, etc.

In Matlab information is stored in so-called data arrays. In the
example figure a 3x3-matrix called “X” with random numbers
between 0 and 1 is generated (command “rand” in the window).
The Workspace window shows all the data you have stored in
memory (in this case only “X").

The Command History window shows all the previously entered
commands. Here: first we cleared the command window (“clc” =
clear console), then we created the “X"”-matrix.

When you open the program you jump to the directory “work” on
the hard disk. This is where the files and data will be stored.
When you start working on different projects it is a good idea to
organize these as subdirectories in this “work”-root.

You can change subdirectories (projects!) in the Current
Directory window.

Besides the options already mentioned there are many more
possibilities which you can find in the (default computer) menu
structure on top of the program window.

Introduction to Matlab + PCA and PLS - LIFE/KU -3 -

So working with Matlab is really simple: you just type in the
right commands! Now all you have to figure out is which of the
hundreds of commands you can use when, how and in what order. And
that is the subject of the rest of this document.

Matlab commmands

Matlab stands for Matrix Laboratory. Hence, all the data handling
is matrix-oriented. To enter the simple data table X
>>X=[1234;567 8]

You now have a matrix X with two rows and four columns (2x4) in the
workspace (*;” here means new line/row). If you enter
>>Y=[15;26;37; 48]

you will have a second data table Y (4x2) - four “new lines” of two
numbers each = four rows, two columns.

To see the results type
>> who
or
>> whos

File Edit Debug Desktop ‘Window Help

0O = é‘: i’ o o ﬁ ﬁ E ? Current Directory: | CmaTLABwvork v E]

Shortouts [2] How to Add (2] What's New

LI 4l Command Window n I
B EEESE | E - stk >» ¥=[1 2 3 4:5 6 7 8]
Marme: “alue Clazs _
Hx [12345678] double
HE‘ b [15,26,37;48] double 0 o . 7
5 6 7 &

»» T=[1 5:2 6:3 7:4 8]
< s(|¥ "

Current Directory | wworkspace

C1TEHZEHER ~
agrt {(14)

ER R X
m -1 m o

“Rorm (&) ~
»» whos

Harne Sige Evtes Class

~which hoxplot

~which box

E-%-- 5/19/06 2:53 AM —-%
K = rand(3,3)

e

~¥=[1 2 3 4:5 & 7 3]
~¥=[1 5;2 6:3 7:4 8]

~whos .
> Fr

X Zx4 54 double array
T 42 64 double array

Grand total iz 16 elements using 128 bytes

4 start

II]

Introduction to Matlab + PCA and PLS - LIFE/KU -4 -

The figure shows the workspace including the dimensions of the
matrices (The change in layout is a results from changing operating
system).

Verify the sizes of “"X” and “Y” from the “whos” command, and make
sure you understand why the two matrices get this size from the
commands shown above.

Two things: a) By simply typing the commands above you
generate the new variables. In the same way you can “recycle”
variables to contain different data (e.g. Y = 3" will change “Y” from a
matrix (4x2) into a scalar value 3 - or special matrix of size (1x1).
Notice that we did this already with X, just look at the two figures
above. b) Matlab is case sensitive, meaning “X” and “x” are not the
same variable names.

Here are three ways to get information for (almost) any Matlab-
command (here we use “who” as an example):

>> help who (short description of the command in the work
environment)

>> helpwin who (description in a separate window)

>> doc who (longer description in a separate window)

The figure shows the window using the “doc”-command on “who”.

File Edit View Go Favorites Desktop Window Help
] ator g @ M
Conterts | index | Search || Demos «—(J Title: | who, whos (MATLAB Functions) X
Q@ Begin Here A o~
+- &2 Release Notes MATLAB Function Reference [«] [+]
Installation
= gMATLAB who, whos «a|
#-Q Getting Started List variables in workspace
#--g- Examples
#-[B) Desktop T_ools and Development Environm: Graphical Interface
#-[3) Mathematics)
¥ Data Analysis As an altemative to whos, use the Workspace browser. Or use the Current
- Programming Directory browser to view the contents of MAT-files without loading them.
+ @ Graphics
#-[®) 3-D Visualization Syntax
#-[B) Creating Graphical User Interfaces (GUIs) Each of these syntaxes apply to hoth who and whos:
=R)Functions - By Category i
i - who
+ Desktop TFIEI|S and Development Environrm who (varisble_list) (—bl
& Malhema“'c? vho (variable list, gqualifiers)
" Data A”ailfs's s = who(variable_list, cqualifiers)
#-Programming and Data Types vho variable_list gualifiers
#-File /O
$-Graphics Description Cl
+-3-D Visualization
Creating Graphical User Interfaces who lists in alphabetical order all variables in the currently active workspace.
vt mven | lndnbmnnmn M - o L X " & = i o . . - " A~
< > < >

Introduction to Matlab + PCA and PLS - LIFE/KU -5-

a) The function you wanted explained is shown together with a
brief description.

b) Then a series of examples shows its possible use.

c) A more official description of the do-and-don'ts for a function
follows (often more text than you hope for!).

d) Like for most software an extensive search mechanism is
available. This can be very helpful if you know what you want to
do with your data, but you cannot remember what the right
command was.

Back to the command prompt; we could have created the matrix
Y (size 4x2) from before a lot quicker
>>Y = X'";

where the '-addition means transpose-operation.

The %;” at the end of the command-line means: don't show the output
on the screen. But if you want to see the new Y anyway, just type
>>Y

If at some later stage Y becomes really big you can terminate the
output to the screen with [ctri]-[c] or [crtl]-[Break]. (If you are not
convinced of its importance just type “rand(5000,100)” on the
command prompt, and see what happens)

Lets do some numeric operations with these two data tables

>=> X-Y (subtraction & your very first error message in Matlab!)
>> X-Y' (subtraction - the right way - leaving you with all zeros)
>=> X+Y' (addition)

>> X*Y (inner product multiplication, 2x2 result)

>> Y*X (outer product multiplication, 4x4 result)

>> Y. *X' (the element-wise multiplication, 4 x 2 result)

>> Y+3.5 (add 3.5 units to each element in “Y")

The examples above showed how to work with entire data
matrices/tables. The next examples illustrate how to extract part of a
table. To retrieve e.g. the second-row first-column element from table
X, and store it in a new variable named “c”, enter the following line
>> ¢ = X(2,1);

In detail: we have our matrix X (2x4), we pick out the element second
row (the row-index = first-index between brackets) and first column
(column-index = second-index between brackets), and we store the
result in “*c” (which should contain a 5; check)

Introduction to Matlab + PCA and PLS - LIFE/KU -6 -

23

67 3] > , and

Matlab handles scalars as matrices of size (1x1) (use the “whos”
command to verify this). A variable named “ans” might have popped
up. It contains the answer of the last question you asked Matlab
without explicitly specifying where to store the result. Thus entering
>> X(2,3)

will show ans = 7; it is bad practice to rely on this variable! Making
ones - with a meaningful name - can save you a lot of trouble!

To extract a full (row or column) vector from a table you can use the

colon “:”-command. E.q.
>>vyl =Y(:,1); y2 =Y(:,2);

to store the first and second column of table Y in (column vectors) y1
and y2.

How does it work? The “:"-separator is used to automatically generate
a list of numbers, e.g.
>>1:4

You will see the list of numbers (1 to 4, counter 1). Also try the
following command

>> 1:3:16

>> 1:2:16 (Where did 16 go?)

>> 15:-1:1

So if we want to have the first three rows from Y, second column
>> Y(1:3,2)

There are two special versions of this command: “:” by itself means
take all entries in this direction (thus entire row or column, like we did
in the example); you don't have to specify the length. The command
“end” can be used to go to the end of a row or column, thus

>> Y(2:end,1)

shows the rows from 2 until the last one, first column in table Y.
One last method to get elements from a matrix by defining new

variables/vectors
>> row_index = [1 3]; col_index = [1 2]; (Make new variables)

Introduction to Matlab + PCA and PLS - LIFE/KU -7 -

>> Y(row_index,col_index) (and use them as indexes)

Notices: a) you can use every variable name you like - including
numbers - but smart names make Matlab-live a lot easier; b) a
variable name cannot start with a number, and you should not give it
the name of a build-in Matlab command such as “whos” (this will
override the command, so you cannot use it any longer).

Higher dimensional data arrays in Matlab are created and
addressed similar to vectors and matrices. To produce a (3x3x2) cube
Z enter the following code
>>Z(:,:,1)=[12 3;456;7 8 9]; (first slab)
>> 7(:,:,2)=[11 12 13;14 15 16;17 18 19]; (second slab)

The cube “Z"” is symbolized in the figure.

1 2 3
Z¢,:,D|l= 4 5 6 Aa A oA
3 /7 8 9 . 2 1 2 3 6
11 12 13 7 8 O
Z(,:,2)|= 14 15 16
3 17 18 19
C = reshape(X,2,2,2)
1 2 3 4 2o
X = c= 1 2]
5 6 7 8 5 6

Indexing in this 3D data structures follows the same conventions as
before: first-index = row-index (x-direction), second-index = column-
index (y-direction) and third-index = so-called tube or tubular-index
(z-direction; “into the paper”). Higher order data tables (4D, 5D, etc.)

Introduction to Matlab + PCA and PLS - LIFE/KU -8 -

are hard to visualize (or imagine) but generating them in Matlab is
simple: just introduce a fourth, fifth, etc. dimension in the indexing

To see the center tube (numbers 5 and 15) in this cube enter
>>7(2,2,:) (second row, second column, all slabs)

Another important command related to higher order arrays is
“reshape”. To transform our old matrix X (2x4) into a small cube C
(2x2x2) enter the following
>> C = reshape(X,2,2,2)

This reshaping-operation can only work if the number of entries in the
source (X: 4x2=8) and target (C: 2x2x2=8) are the same. Notice that
“reshape” is a column wise operation

>> reshape(X,2,2,2) (create a cube form X - check the numbers)

>> reshape(X',2,2,2) (create a cube from its transposed - check)

One more useful command for data cubes is “squeeze”:
>>Z(:,1,:) (selects the first slab “in the paper”)
>> squeeze(Z(:,1,:)) (“squeezes” this data in a regular/flat matrix)

So, the basic form to store data is in arrays of so-called double
precision real numbers: scalar in size (1x1), vectors in size (1xn) for
rows or (nxl) for columns, matrices in size (nxm), cubes in size
(mxnxo), etc. There are many more forms for storing numerical and
non-numerical data, important for computer-internal business, but
that is only important for more advanced work.

Briefly three structures you could use or encounter. Keep a close eye
on the “Workspace” area of your Matlab surrounding to see if you
understand all the symbols appearing. To form a string of characters
(so-called char array) enter

>> surname = 'van den Berg' (make a text string)
>> forename = 'Frans' (and another one)
>> name = [surname ', ' forename] (manipulate strings like arrays)

The so-called “cell array” can be used to store both text and numerical
arrays with different sizes (this is a rare/advanced format, but notice
that e.g. rows of different length cannot be stored in a conventional
matrix; also note the curly brackets)

>> phone_nrs = [3528 3545]

>=> CPR_nr = 2003680000

>=> nr = {phone_nrs CPR_nr 'my numbers'}

Introduction to Matlab + PCA and PLS - LIFE/KU -0 -

>=> nr{2} (this will give the CPR-number)

The last data format - “struct” or structure - is convenient to group
like-things together (notice the use of *.” - dot).

>> person.email = 'fo@kvl.dk’ (a new text string)
>> person.name = name (an existing text string)
>> person.numbers = nr (cell array in the structure array)
>> person (shows the contents of the structure)
>> person.email (to address elements use dot-notation)
A o™
':l__'lgg | |:|' Stack:
Mame Walue Clazs
H PR nr 2.0037e+H109 double
b forenarne Frans' char
libd niarne wan den Berg, Fra... char
nr <1%2 cell= cell
perann <1%1 struct= struct
HH phone_nr [3528 3545] double
libd surnarne an den Berg' char
£ >
Current Directory | \wiorkspace
Some other useful command
>> clear yl1l y2 (clear variables y1 and y2 from the workspace)
>> save myfile (saves all variables in the workspace to a file called
“myfile.mat”)
>> clear all (clears all variables)
>> |oad myfile (loads all variables from the file “myfile.mat”)

There is one more convenient feature in the Matlab editor: the
arrow-up [T] of the keyboard will callback all the old command entries,
from newest to oldest. So you don't have to type everything over and
over again, just call an older version of a similar thing you want to do
by repeatedly pushing [1], and edit it to do the new job. Use [«], [—],
[Delete], etc. on the command line like you would in a conventional
text editor.

Introduction to Matlab + PCA and PLS - LIFE/KU -10 -

If you know the first letter of the old command, type it at the prompt
and push the arrow-up to scroll the commands starting with this letter.
E.g. typing “w” and then arrow-up would first show the “whos” and
then “who” for the commands treated so far in this text.

Script, functions and plotting

To fully explore the graphical possibilities of Matlab we first have
to get hold of some interesting things to plot. We will generate some
Gaussian-curves. Below is the formula for a gauss- or normal-
distribution where “x” is the running index (a probability index in

A\ /4

statistics), “u” is the mean and “¢” is the standard deviation:

1 (=) V
1 e 2(o)

y(x) =

o2

We can implement and plot this in Matlab with the following lines of
code
>> x = 1:100; mu = 50; sigma = 10;
(running index, mean and std. deviation)
>>y = 1/(sigma*sqgrt(2*pi)) * exp(-0.5*((x-mu)/sigma).™2);
(“sqrt” = square root; “exp” = exponential)

Say you would like to plot green dot-markers for the points in our
vectors x and y together with a blue line connecting the points (the
default plot), enter the following command

>> plot(x,y,X,Y,".d") (plot the results twice: blue line and green dots)
>=> grid (add some lines to assist in interpretation)

>> xlabel(*x-index"); ylabel(‘probability"); title('Gauss")

>> legend('line’,"markers’) (add some text and labels for the lines)

Notices: a) If you want to pass text to Matlab you have to include it in
quotes (e.g. ‘x-index’) just like we did for string arrays (this is the way
the program distinguishes commands and variables names from text-
input); b) If you do not specify markers, points will be connected by a
line; If you do not specify the color the fixed order of lines will be:
blue, green, red, cyan, etc.; c) study the help for the “plot” routine to
get more info.

You noticed that the plot-command opened a separate window, copied
in the figure below.

Introduction to Matlab + PCA and PLS - LIFE/KU -11 -

<) Figure 1

File Edit View Insert Tools Deskiop Window Help <«—@ ™
DeE&E hRaMe € 0B =0 «d
Gauss
| I S T
b LI ede[—ne
0.035 |- -----iomnmnnioomonan \\ + markers |
et Ee
b 003 s S A o S S A
b Nea
e e M T S
= S R S T A
I ISR SO SNV SN USROS RSO WU SUUOOE SOV SR
_n [} 1l [} 1 [} [} L} L} [}
E L} " L} L} L} L} L " L}
= ' H ' ' ' ' ' ' ‘
0.015 Z] : Foonee S W frsnsaspasasacy
.-
0.005 :\ ----- S —
0 L Sl
80 90 100

a) The data is drawn. The first time as a blue line (default since no
plotting mode was specified) and second time green “.”-symbols
specified in the plot command.

b) Labels and title are next to the axis.

c) A legend box is put inside the plotting-paper.

d) A number of operations can be performed on the plot: select
objects, add text/arrow/lines, zoom in/out or rotate the figure
(we will come back to rotation later on).

e) Under the menu options [Edit] and [Tools] you will find more
(albeit more difficult) figure manipulation options.

The commands you typed in to generate the gauss-curves are
pretty complicated, and it is easy to make errors when typing
complicated commands on the Matlab prompt. To avoid this you can
use so-called scripts. Push the [new]-button on the Matlab window
(blank in upper left corner). This will open a new window - the script
editor.

Introduction to Matlab + PCA and PLS - LIFE/KU -12 -

In the editor sheet you can enter the following text (copy-paste, but
remove the “>>" signs)

>> clear all

>> x = 1:100; %running index

>> mu = 50 + randn(3,1)*10; sig = 10 + randn(3,1)*2;

>> 9 just some random numbers

>>y(1,:) = 1/(sig(1)*sqrt(2*pi)) * exp(-0.5*((x-mu(1))/sig(1))."2);
>> y(2,:) = 1/(sig(2)*sqrt(2*pi)) * exp(-0.5*((x-mu(2))/sig(2)).M2);
>=> y(3,:) = 1/(sig(3)*sqrt(2*pi)) * exp(-0.5*((x-mu(3))/sig(3)).N2);
>> figure %oo0pens a new window

>> plot(x,y); % plot the results

>> grid;

>> |legend('gl’,'g2','g3"); %that's it!!!

The command “randn” generates a random number with a so-called
normal/Gaussian distribution; see “helpwin randn” and “helpwin rand”
for further information.

Then save this file under the name “myscript”. Matlab will store
it as the file called “myscript.m”, and you can execute this series of
commands by simply typing
>> myscript

& Editor - C:\MATLAB\work\myscript.m

File Edit Text Go Cell Tools Debug Desktop Window Help AAX
Dl i aBoo & AdAess 68 RAE B || H v
2 |*'BrBi8| =10 [+ | 2|14 [x [| @O

1 - klear all «—3g d
Zi= x = 1:100; srunning index

3 - mu= 50 + randn(3,1)*10; sig = 10 + randn(3,1) *2;

4 % just some random numbers <_b

5- wi(l,:) = 1/(sig({l) *sgrt{2*pi)) * exp(-0.5*{{x-nuf{l))/sig(l)).~2):

6 - vi2,:) = 1/(sig(2) *sgrt(2*pi)) * exp(-0.5*({(x-mu{2))/sig(2))."2):

7 - ¥(3,:) = 1/(sig(3) "sqrt(2*¥pi)) * exp(-0.5%((x-mu(3))/sig(3))."2):

8 = figure opens a new window

9 - plot(x,v): % plot the results

10 = grid:

IEll= legend('gl!','g2',.'g3'): sthat's jt!ll!

f te 1t
© Untitledt % | myscriptm X |

script Ln 1 Col 1

Introduction to Matlab + PCA and PLS - LIFE/KU -13 -

a) Regular Matlab commands within the script file.

b) Comment text lines (always starting with “%?") help to explain
the intension of the operations. They are neglected by the
Matlab command interpreter.

c) Color schemes in the editor improve the readability.

d) Line numbers are useful for the error messages generated in the
Workspace Command Window.

Note: scripts also are a great help and time-saver when the
computations of yesterday looked a lot better than the "“same”
computations today, so use them!

Two related command:
>> type myscript

will print the contents of the file in the command window, and
>> open myscript (first close the editor for the best effect!)

will open a script in the text editor.

Scripts are the perfect tools for work in progress, but for an
operation that you do on a daily basis so-called “functions” are more
appropriate.

To load the function “gauss.m” into the editor type (make sure the
computer exercise material from www.models.life.ku.dk > Teaching >
Introduction to Matlab + ... - bottom of the page, unzip file - is in the
Matlab “work” directory)

>> open gauss

Introduction to Matlab + PCA and PLS - LIFE/KU - 14 -

%) C:Memplgauss.m

File Edit View Text Debug Breakpoints Web Window Help

0= & As, 8x 1B % stas
a‘l_) function Z = gauss(n,mu,sigma,options)
2 % fu Z = gauss(n,mu,sigma,options)
3
4
5
b
8
9 g. 0.1 adds l0%-max-value noise)
10
1 % out: Z {objects x n) data table with gaussian curves
12
13| - if (nargin < 3) <« e1
14| - help gauss
151= return
16| | elseif (nargin == 3)
17|= options = 0;
18| end «— ey
19
20|-] nZ = lengthimu):
21| - if nZ ~= length{sigma) < e2
22 = error{'Error: number of entries for first (mu) and second moment {sigma) must be the same')
231 end <« ez
24
25|- g % = lin;
26| I for a=1:nZ < e3
27‘1 Zia,:) = exp(-0.5%((x-mu(a))/sigma(a)).*2)./(sigmaf{a)*(2*pi)*0.5):
28(— (] end
29 <&
30|- if optionsil) <~ e4
31'5 nmax = max(Z(:))%options(l}:
2= Z = Z + rendn(size(Z)) *nmax;
33— |1 end <« e4

In the window you can see the typical structure of a Matlab function:

a) The function description with the function call name (“gauss”),
input parameters (“n”, "mu”, “sigma” and “options”) and output
parameters (“Z”). Input is the data you pass from the Matlab
workspace to the function, output is what the function returns to
the workspace as answer to the function call. Note that the
names proposed in the function header are only for explanation
and internal use. You can pass any variable you like. So the call
command X = gauss(hundred,averages,spread) is perfectly
legal. It calls the function gauss, translates the real to virtual
variables (e.g. "n” = “hundred”), and executes the commands.
Note also that input and output parameters are optional. You
could e.g. define no output parameter, so call
gauss(hundred,averages,spread). Then the function would
compute the curves and the result would go ... well nowhere (not
very useful, but perfectly legal). We already made use of this for
the “plot” command: nothing changed in the workspace, but we
got a figure, so it can be very useful.

Introduction to Matlab + PCA and PLS - LIFE/KU - 15 -

b) The help-text just after the function header should explain what
to fill in to make the function perform. This is also the text you
get on the screen when you type “help gauss”.

c) The next step is usually some error tracking. In this example:
check if enough input parameters were entered for the function
(3), and see if the number of u's and o's are the same (every
Gaussian distribution requires one of each).

d) Then the actual code - the hart of the function - is executed:
compute distributions of length n-points for each entry in “*mu”
(and thus “sigma”), and store the result in “*Z".

e) Archetypal for the internal of functions is computer programming
flow-controls. We will not explain these programming tools in
detail in this introductory course, but the three flow-controls in
the figure are very intuitive: (1) check (if ... end”) to see if the
user passed the three obligatory input arguments (“nargin”),
and if not show help end terminate the function (“break”); (2)
check (second “if ... end”) to see if "mu” and “sigma” are of
equal length, and if not terminate the function showing an error
message in the workspace (“error”); (3) loop (“for .. end”)
through the Gaussian distribution computation “nZ” times, and
store the result in rows of matrix “Z”; (4) if input argument
“options” is activated (fill in “*1”) some random noise will be
added to the gauss-curve.

The important difference between scripts and functions is the way
variables are handled. Every time a function call is made a new (small)
workspace is created with all the variables necessary to execute all the
commands inside the function. Thus, variable names inside the
function and in the workspace are separated. If e.g. you have a
variable “x” in your Matlab window, and you call the gauss-function,
which creates its own “x” (line 25), the contents of “x” in your own
workspace will remain the same. This is not the case for script or
command-line calls, where the "“x"-variables will be overwritten.
Functions make a new work space, execute the required operation,
clear all the temporary variables, and drop the output variable in the
Matlab root-workspace (nice and clean!).

You will probably not write many functions yourself at this stage,
but all the computations you will make (and actually many of the
Matlab functions used so far, just type at the prompt open(‘mean'))
are function-calls. So, you have to know what to give as input and
output.

Another example:
>> myx = -pi:.1:pi; (index running from -n to = with a step

Introduction to Matlab + PCA and PLS - LIFE/KU -16 -

size of 0.1)

>> mymu = 31+myx*8; (some curve means)
>> mysig = cos(myx)*2+8; (some standard deviations)
>> myX = gauss(length(mymu),mymu,mysig); (make a data table)

Notices: a) “length” returns the length of a vector; b) try to figure out
the size of "myX” with the command “size”; c) again, Matlab is case
sensitive in variable names (myx = myX)!

Now we have the data to do some advanced plotting (just try
and see; with the [U]-button in the figure window you can rotate plots
to get a better view):

>> figure (opens an empty figure window)
>=> plot(myx,myX)

>> mesh(myX)

>> surfc(myX); shading interp; colorbar hort

>> subplot(2,2,1) (“subplot” = small plots in figure window)
>> contour(myX)

>> subplot(2,2,2)

>> contourf(myX)

>> subplot(2,2,3)

>> meshc(myX)

>> subplot(2,2,4)

>> pcolor(myX); shading interp; colorbar vert

Introduction to Matlab + PCA and PLS - LIFE/KU -17 -

-} Figure 1

File Edit ew Insert Tools Desktop wWindow Help

DedE kh RaQN® € |0E 80

'/'«5//
, /

Just a few more commands that might come in handy:

>> what (shows the *.mat and *.m file in the directory)
>> which name (tells which file “name” you are using)

>> dir (shows all the files in the working directory)
>> cd (to change directories a-la dos-style)

>> tic; pause(5); toc (these are really three functions: “tic” starts a
stopwatch, “pause(5)” holds all operations for 5
seconds, while “toc” stops the stopwatch and shows
the time elapse: a convenient way to time how long
a Matlab function takes)

>> x=rand(5,1); mean(x); std(x); var(x); sqrt(x); log(x); 10og10(x);

exp(x); (Matlab has of course a whole range of arrhythmic operators)

A few special elements:

>>a =[] (creates an empty or (0x0) matrix)

>> b = NaN (assigns the “number” not-a-number to b, used to represent
missing values inside a Matlab matrix)

>>c = Inf (Assigns the “number” infinite to ¢, useful in logical operations)

Introduction to Matlab + PCA and PLS - LIFE/KU -18 -

Manipulating Images

To get a little more practice in manipulating data tables we will
import an image into matlab. (Notice that an image is nothing more
then a multi-way array!)

First import and show the image into a variable called “A” (check the
workspace)

>> A = imread(‘apple_green.jpg");

>> image(A);

We just loaded an image of green apples, 165 by 213 pixels. Color
images are most often coded by three values Red, Green and Blue (so-
called RGB-indexing). Hence the data cube is (165x213x3). The class
of variables in this image is a special one called “uint8” or unsigned-
integer-eight-bits which can hold values between whole 0 and 255.

Try the following commands

>> imagesc(A(:,:,1)) (only show the R-value/slab - notice sc = scale)
>> colormap gray (use gray-scale colormap)

>> imagesc(A(:,:,2)) (only show the G-value/slab)

>> imagesc(A(:,:,1)) (only show the B-value/slab)

>=> image(A(:,:,[3 1 2])) (“false-images” - rearranging R, G and B)
>> image(A(50:130,80:160,:)) (zoom in on one apple)

>> mesh(double(A(:,:,1))) (3D relief of the R-value matrix)
>> image(uint8(abs(double(A)-255))) (never mind, just try it!)

From a data point of view images are nothing else then other matrices
or data tables/cubes!

Introduction to Matlab + PCA and PLS - LIFE/KU -19 -

Importing data from The Unscrambler, LatentiX and MS-Excel
into Matlab

Many advanced ways for importing data into the Matlab exist
(including low-level C-like programming). Most of these are too
complicated for this introductory course, but we will try two routes -
importing external information from The Unscrambler and MS-Excel,
since experience has shown that many course people have their data
in these formats.

Make a small dummy-set that looks like this in The Unscrambler (don't
forget the object and variable names):

k& The Unscrambler - [DATA1]

| File Edit Wiew Plot Modify Task Resulks Wind

D|=|d| - [=]@ Sk 2 2w
var vard Yard
1 z 3
ahijl 1| 1.0000 2.EIEIEIEI| 3.EIEIEIEI|
ahj2 2| 40000 50000 60000

Next, go to the menu [File] - [Export], then select a file-name (a) and
“Matlab Export” as type (b):

o [D < 8 o

Hame [Type | Creator | Modified [

Flensme: |datd (a) Export

Export as type: [MatJabFlIes (b) j Cancel I

Information:

Data Name:

Directory:

Creator: Cuest

Date: 2004-01-09 14:53
Software Version: w8.0

Type: Non-design data
Size: Z Samples, 3 Variables

' Extacted -

Introduction to Matlab + PCA and PLS - LIFE/KU -20 -

If subsets of Samples (a) or Variables (b) have been defined in the
Unscrambler analysis, you can select which groups to export:

Export Matlab @
Sets
e

[alSamples (@) @1~| Defie.. | Cancel |

Variable set: Help
IAII Variables {b) 31 :J Define...

Contents
File format: |[EETE R v

¥ Export sample and variable names

In Matlab the dummy-set will look like this, with (a) objects labels, (b)
variable labels and (c) the data:

<} MATLAB
Eile Edit View Web Wndow Help
D@ X [> v ¥ | ? | CurentDirectory: | C:iny DocumentsthTML _introMatiabinew N E]
Wor kspace Command Window
= H B 5B Stack [Base [>> load data

- ——— | [>> ObjLabels
Nane Size E.
[ed 0biLabels 2x16 ObjLabels = (a)
ﬂnacrix 2x3

objl

fed varLabels 3x16 lob32

> VarLabels

= —H [VarLabels = (b)
‘Workspace Current Directory
warl
cd .. “| fvars
dir
cd ny' Documents)' >> Matrix
cd hTHML_introMatlab\new) l)
- Matrix = ()
dir
clc 1 2 3
load data 4 5 6
ObjLabels
VarLabels >>
Matrix
| v
4 start |

Importing data into Matlab from the data analysis program LatentiX
(www.latentix.com) is straightforward since the information is stored

Introduction to Matlab + PCA and PLS - LIFE/KU -21 -

in @ compatible format with files extension “Ixf”. So, to read the data
from a file called “data.Ixf” and store the matrix in a variable “X” enter
the following commands

>> |oad -mat data.Ixf

>> X = DataSet.data;

>> ObjLabels = DataSet.Labels{1};

>> VarLabels = DataSet.Labels{2};

There is a special Matlab function to import MS-Excel spreadsheets.
The same dummy-set would look like this (make sure you only have
one sheet to avoid problems - (a)):

B Microsoft Excel - data

@_] Ele Edit View Insertt Format Tools Data W
D QY B e

) @ 7 &5 62

Al - e

A B C D E

il varl var2 var3
2 objl 1 2 3
3 |obj2 4 5 B
4
1
32
33
i « » n]\Sheetl Sheet2 / Sheet3 /(a)
Ready

In Matlab we can import the spreadsheet-file (call it “data.xIs”) via the
following lines (a), where the data will be stored in X (b) and the
none-numerical part in N (c):

Introduction to Matlab + PCA and PLS - LIFE/KU -22 -

Ele Edit VYiew Web Window Help

D= 2 .| % | 2 | CurrentDirectory: 4c:1rny DocumertsthTML_introMatlabinew: v
Workspace [2](|(j Cormmand Window (@)x]| !
=8 = Stade >> [X,N]=xlsread('data.xls') (3)
Name Size Bl |x = (b)
B x 2x3
B x4 12 3
! 5 6
1= {c)

-< —>. [1 'varl' Yvrar2! 'var3!'

Workspace Current Directory 'objl! [] [l [1

= tobjz! [1 [1 [1
‘Command History @
cle Al > |
load data
Objlabels
Varlabels
Matrix
clc
[X,H]=xlsread('data.xls")
clear
cle
[X,H]=xlsread('data.xls')

v

l¢snan]

Be aware that it might take some puzzling to figure out where the
numbers are in the Matlab matrices, especially if text and number are
intertwined in the spreadsheet. The easiest route is to make new
spreadsheets (e.g. one with numbers, one with object labels, one with
variable labels, etc.) that are trivial to read.

Notice: starting Matlab 7/R14 there is also a function to write to Excel
files called “xIswrite”. We will not explain it here, but it might be good
to know for later use.

The “path” and third party products

We already have encountered many Matlab commands. A way to
see where the source of the command can be found is as follows:
>> which rand
the message on the screen shows that “rand” is a so-called build-in
function.
>> which surf

Introduction to Matlab + PCA and PLS - LIFE/KU - 23 -

now the screen message shows that “surf” is a function that can be
found in “x:\MATLABXXX\toolbox\matlab\graph3d\surf.m”, part of the
3D-graphics function-set.

Next to the internal function Matlab comes with a number of default
toolboxes. They consist of hundreds of different functions, organized in
conceptually meaningful groups. You can also buy additional toolboxes
for special, very diverse purposes (e.g. statistical computations, or
instrumental data input-output over the hardware computer
interfaces). Even better: many scientists make there code available for
free. This means you can do a lot of research by lending other peoples
program code, without going into programming details (just search the
internet!). However, you still have to understand how to communicate
with other people's code via input and output parameters. In this
paragraph we will treat organizing new features in the form of
toolboxes added to the Matlab search path using the iPLS (interval-
PLS) from the iToolbox written by Lars Ngrgaard.

You can find the source code for the iToolbox at the KVL
Quality&Technology homepage under:
www.models.life.ku.dk - Research - Algorithms and code = iToolbox

Here you can find important information on the author, ownership and
use. Download the zip-file to your own computer. Make a new
directory in the path “"Matlab\toolbox” called “itoolbox”, and extract the
contents of the zip-file to this directory. The next step is to add the
new toolbox to the Matlab search path.

In the workspace editor select: [File] > [Set Path] - [Add Folder] >
find [toolbox] and then [itoolbox] in the browser > [Save] = [Close]
(see figure below for details).

Introduction to Matlab + PCA and PLS - LIFE/KU - 24 -

All changes take effect immediately.

MATLAR search path:

| adoFoider. |

|add with Subfolders..

L CAMATLAB GRS ool boxifrans
[CAMATLABGpStoolboxifransimb
[CAMATLAB G pattoolboximaay

CAMATLABERStoolbO
hove to Top LB FEADOR B DR Browse For Folder
[CMATLABERS0olbO
[CIMATLABEpSHaolpo] Add Folder to Path
CAMATLABGRS OOl
SycwTo
[CMMATLABERS0olho & I3 images
Maowve to Bottom £ COMATLABGRStoolho B 1) instrurment
H i
([CMATLABRpStoolbo ‘fl S ;
1=l) gd{ululla]uks
[C:IMATLAEIE;JSHUDIDUI) private =
[CACAMATL ARRRAtNOlhO () 10N
I3 kwL
[Save] [Cloge J [Revert] D] 130 kel :
Folder: | itoolbox ‘
[Make Mew Falder] [o4] [Cancel]

To check if it works type
>> which ipls
>= help ipls

This will write a small help text for the toolbox in the workspace
window. Can you figure out what the input and output to this function
should be? We will show by illustration. The toolbox comes with an
example data file called “nirbeer” (Near Infrared spectra of beer

samples):

>> clear (clear the workspace)
>> |oad nirbeer (load data)

>> whos (to see what we loaded)

>> M=ipls(Xcal,ycal,8,'mean’,40,xaxis,'full',40);
(compute the model, 8 factors, mean centering,
40 intervals, full cross-validation and store the
result in structure “M")

>= iplsplot(M,'intlabel") (plot the results with numerical labels)

We will not go into the interpretation of this model. If you want to
learn more about the iPLS method you can run the iPLSdemo-routine
and study the manual included in the toolbox.

Introduction to Matlab + PCA and PLS - LIFE/KU - 25 -

A few important notes: a) You have much liberty in selecting
names for variables and functions which sometimes leads to problems;
the order is roughly: variables in the workspace, function-files in the
working directory and function-files in top-to-bottom order in the
directories of the path; b) To keep things in perspective you have to
be clear in naming functions and variables; c¢) If you get
strange/unexpected error messages, use the “which” command to see
which function Matlab is using, if you still get strange errors you can
always try the “why” command.

As shown above, finding the right input to other peoples
functions - of course depending on the help available and the didactic
skills of the author - can be pretty complicated. One (very luxurious
albeit time consuming way) to circumvent problems is to write a
Graphical Users Interface (GUI). In short: GUI's control the user's
interaction with a toolbox/set of functions by limiting the input to
predefined values and a restricted (graphical) output.

One last helpful command is “lookfor”. It will scan all the functions on
the “path” for a particular text fragment. E.g. if you forgot the
command for standard deviation enter the following line (beware,
searching all the function files might take some time)

>> |lookfor deviation

Introduction to Matlab + PCA and PLS - LIFE/KU - 26 -

More reading material

This is all the basic stuff you need to know about Matlab. If you
want more (introductory) information a pdf-file called “Getting Started
with MATLAB"” (getstart.pdf) can help out. The following parts are of
interest for this introductory course (see list below for details):

1. What is Matlab (p.12)

2. Matrices and Arrays (p.19-27)

3. Basic Plotting Functions (p.88-111)

4. Flow Control and Other Data Structures (p.126-143, though not
every detail!). assigned

MATLAB

The La nguage of Technical Computing

Computatior
Visualization

Programming

Getting Started with MATLAB® &\ The MathWorks

Version 7

In the next part on bilinear factor models we will only use a few
specific, additional functions.

Introduction to Matlab + PCA and PLS - LIFE/KU -27 -

(a : important; b : less important; c : not important for this course)

1 Introduction
What Is MATLAB?
The MATLAB System
MATLAB Documentation
MATLAB Online Help
Starting and Quitting MATLAB
Starting MATLAB
Quitting MATLAB
MATLAB Desktop

2 Matrices and Arrays
Matrices and Magic Squares
Entering Matrices
sum, transpose, and diag
Subscripts
The Colon Operator
The magic Function
Expressions
Variables
Numbers
Operators
Functions
Examples of Expressions
Working with Matrices
Generating Matrices
The load Function
M-Files
Concatenation
Deleting Rows and Columns
More About Matrices and Arrays
Linear Algebra
Arrays
Multivariate Data
Scalar Expansion
Logical Subscripting
The find Function
Controlling Command Window Input and Output
The format Function
Suppressing Output
Entering Long Statements
Command Line Editing

3 Graphics
Overview of MATLAB Plotting
The Plotting Process
Graph Components
Figure Tools
Arranging Graphs Within a Figure
Selecting Plot Types
Editing Plots
Plot Editing Mode
Using Functions to Edit Graphs
Examples — Using MATLAB Plotting Tools
Modifying the Graph Data Source
Preparing Graphs for Presentation
Modify the Graph to Enhance the Presentation
Printing the Graph
Exporting the Graph
Basic Plotting Functions
Creating a Plot
Multiple Data Sets in One Graph
Specifying Line Styles and Colors
Plotting Lines and Markers
Imaginary and Complex Data
Adding Plots to an Existing Graph
Figure Windows
Multiple Plots in One Figure
Controlling the Axes
Axis Labels and Titles
Saving Figures
Mesh and Surface Plots
Visualizing Functions of Two Variables

o e
|
NOOO A~ PWN

[R

NI\JNNNNNI\JNNNNNNII\)I\JNNMNNNNNNNNI\JI\JN
WWWNNNNNNNRERRRERRERRERRERRERBEBRRERREREBREONOORWN
fa VI« VN o A o VI VI « VAR o VIR o VI V RN o VIR VI « VAR o N o VNN VN o VIR o VK V N « VAR o VIR V N VR oV IRK VN« AR o VIR o V R VRN o VIR oV}

RO R R O
oOo0ooCwooOUIUNNhHRHOWMONOCUVTUPDADNWNREEOO

o o1 1 1 1 1
000 E

LnLnLan-b-b-b-b-b-b-b-bwkbwwle\JNl—‘l—‘l—‘l—‘l—‘\anNN

wwwwwwuwwwwuwwywwuwwwwwwwwwww
NNFEFOOIITDITPWHRERLOOODUIWOONOOVOOOPAW

[VR VIR VR VR TRV

Introduction to Matlab + PCA and PLS - LIFE/KU

(e}

oOoo0Oo0oo0oonoo0oo0oo0o0o0n

Images
Reading and Writing Images
Printing Graphics
Handle Graphics
Using the Handle
Graphics Objects
Setting Object Properties
Specifying the Axes or Figure
Finding the Handles of Existing Objects
Animations
Erase Mode Method
Creating Movies
4 Programming
Flow Control
if, else, and elseif
switch and case
for
while
continue
break
try - catch
return
Other Data Structures
Multidimensional Arrays
Cell Arrays
Characters and Text
Structures
Scripts and Functions
Scripts
Functions
Types of Functions
Global Variables
Passing String Arguments to Functions
The eval Function
Function Handles
Function Functions
Vectorization
Preallocation
5 Creating Graphical User Interfaces
6 Desktop Tools and Development Environment

wuwwwt:uwwwwww

-bAbbbbb#bbbb?bbbbbbbbbbbb

Introduction to Matlab + PCA and PLS - LIFE/KU

NNNNOOCODOOO O Ul
ANNOOVUIWNNO OO
OO0 o0o0o0oo0o0o0

[V TRV VIR VR R VR o}
T OoTUTUOUO
(e}

WWWNNNNNNNNRERER,OOOONOOTOTUDANN

WNOUOWONIOOTANHFHOO W

OO0 o0oo0oo0oo0o0n

Principal Component Analysis

The next part of this document contains the transparencies used
in the lectures on PCA, accompanied by some “telegram-style” notes
on the main issues.

Principal Component Analysis
“Exploratery data analysis”

Investigation and Visualization!

[- -

}

Often: observational data
Sometimes: design data
Seldom/never: hard models

Introduction to Matlab + PCA and PLS - LIFE/KU - 30 -

PCA Leading example — Data table
Demographic data
£ #

7Y
°"o® @é%f"* a e,
8 s &l 7 variabl

variables

Austral 0.0210 0.0986 0.8560 13160

Austria 1.7200 0.0985 0.5460 0.6700

Barbado 7.1210 240 0.2000

Belgium 5 5

Brit Gu

Bulgari

Canada "

Chile b

CostaR iR

Cyprus = 0.4670

Czechos [=7] 0.6800

Denmark ~ 14340 ‘o 10670

El Salv 1.4870 ;' 0890 L4y, 0,2190

Finland 15120 - 0.0985 529 0.7940..

France 12880 © 100964 I 5430

West Ge 36310 0.0985 0.5280 "o.gzg

Yugosla 1.2150 0.0770 0.5240 0.2650

Gunst, R, F., and Mason, R. L. (1980), Regression Analysis and Rs Application: & Data-COrierted Spproach, Mesw York: Marcel Dekker, p. 353,

We will use a small example as a reminder: socio-economical
status of 49 countries world-wide determined by 7 indicator
variables/demographic characteristics:

1) Infant death per 1000 live births

2) # of inhabitants per physician

3) population per square kilometer

4) population per 1000 hectares of agricultural land

5) Percentage literate of population aged 15 years and over

6) # of students enrolled in higher education per 100000 population
7) gross national product per capita (US dollars)

Notice that we don’t go blind into the data: we have “independent
measurements” in the form of numbers, but we also know about the
sample (countries). The knowledge is important for interpretation.

R.F. Gunst and R.L. Mason “Regression Analysis and Its Application: A
Data-Oriented Approach” Marcel Dekker, New York, p. 358(1980)

Introduction to Matlab + PCA and PLS - LIFE/KU - 31 -

Principal Component Analysis
Data table (‘toy problem’)

Data table/matrix (X)
variables
#1 #2 #3
objects
(samples)

L T T - -
L T T - -
L T T - -

1
2
3
4
5
6
7
8

Principal Component Analysis (PCA) can be used to analyze
tables of data, where a number of the same variables are
measured/collected on a set of samples (called objects). The aim is to
find the important things happening in the table: separate the main
directions/principal components form the noise.

Stated differently: extract what objects have in common from what
makes objects unique.

Introduction to Matlab + PCA and PLS - LIFE/KU -32 -

Principal Component Analysis
(bi-)Linear Factor Model - Concept

]
+
+

s Principal Component Analysis determines factors from a data table by
making new ‘pseudo’-variables (so-called principal components) from
linear combinations of the original variables

* The factors (principal components) are selected to explain as much
information (variance) in the table as possible

s The new variables eliminate redundant information (and filter noise)
from the original data table

There are many different objectives for doing PCA - often
different viewpoints associated with the specific fields of science - but
will focus our attention on these three.

Introduction to Matlab + PCA and PLS - LIFE/KU - 33 -

Principal Component Analysis
First principal component

variables

123 et

objects
[=-R I =r S B FLR SR
>

variable #2

variable #1

As a small example we will take a matrix X of eight object and
three variables (8 x 3). We can visualize this table as eight points in a
three dimensional space. The objects have a particular score on the
three variables, and the position of an object is fixed by its three
values in the Cartesian coordinate system.

In the same line we can picture (in our mind!) an eight dimensional
space where the three variables (three points) are expressed in the
objects-space (it is a lot harder to visualize this, but will use this
mental picture later on!).

Introduction to Matlab + PCA and PLS - LIFE/KU -34 -

Principal Component Analysis

First principal component

P
variables 74,

123 et

‘ factor 1

objects
[—-B - R T U N

variable #2

loadings
123 o

variable #1

The first factor in PCA is:

e The direction that “spans” the objects the best

e Explains the maximum amount of variance in the data set

e Finds the common ("most common”) direction in the set
(Three times the same thing!).

To fixate the new direction in the original variable space we define

three loading-values (traditionally called p) plus the origin: two points
to fix a line.

Introduction to Matlab + PCA and PLS - LIFE/KU - 35 -

Principal Component Analysis

First principal component

9’-
Fl
variables 9649
123 Bt
1 (o])
o ? factor 1
g
¥ X
b
°; A
8 o
o
E
&£
2 a
s (
&
loadings > o
123 (5]
1
@ 2
o 3
5+l (factors 1)
o
n b
i
8
variable #1

By projecting the sample-points on the new coordinate line
(determined by the loadings), every object gets a score value
(traditionally called t). The t and p vector pair form the first factor (or
principal component). The outer product of t and p has the same
number of entries as the original matrix, and this “reconstruction”
forms the best rank one (outer product) approximation of X.

Introduction to Matlab + PCA and PLS - LIFE/KU - 36 -

Principal Component Analysis

First and second principal components

variables %

123 et

factor 1

objects
[—-B - R T U N

o™
W }\&
[} 4
g X
_ 5 M4
loadings > o S factor 2
123 (o]
1
2@ m
=
- I £
S 5| « (factors 1 and 2)
(%]
o 6"
il m
gl m
| |
variable #1

In the same way a second factor can be determined, where we
select the new coordinate perpendicular to the first one (and again
going through the origin).

We can continue in extracting factors until all the systematic variance

is captured and only noise/information on the individual object level
remains.

Introduction to Matlab + PCA and PLS - LIFE/KU -37 -

Principal Component Analysis
Concept revisited

- : :

s Principal Component Analysis determines factors from a data table by
making new ‘pseudo’-variables (so-called principal components) from
linear combinations of the original variables

X EgT

By using the sample scores t as the pseudo-variable:

» The factors (principal components) are selected to explain as much
information (variance) in the table as possible
By drawing the new axis/coordinates along the main (principal)
direction in the data cloud

e The new variables eliminate redundant information (and filter noise)
from the original data table
By keeping only a few factors, much less then the original variables

Introduction to Matlab + PCA and PLS - LIFE/KU - 38 -

PCA Leading example — Data table

Demographic data

%,
s,
%o, "'@'{5 K 6‘%
065:¢ ‘9"65‘9 "~
Austral 0.0195 00, 0.0210 0.0985 0.8560
Austria 0.0375 50 . I 0.5460
Barbado 0.0604] . I 240
Belgium
Brit Gu
Bulgari
Canada "
Chile b
CostaR L
Cyprus -3
Czechos =]
Denmark ~
El Salv 0.0763
Finland 0.0210
France 0.0274
West Ge 0.0338 0.2170 3.6310 0.0985 0.5280
Yugosla 0.1000 1.6370 0.0730 1.2150 0.0770 0.5240

0.2650

Gunst, R, F., and Mason, R. L. (1980), Regression Analysis and Rs Application: & Data-COrierted Spproach, Mesw York: Marcel Dekker, p. 353,

Introduction to Matlab + PCA and PLS - LIFE/KU

-39 -

Example
Demographic data

7 pop. perkm2|_ pop. agri. land
. *Singapo
49
o # students
=Malta ; O
2 Netherl usa GNP
Eo D, o
[y}
o
o # per physician .
O Clry
*Guatema
sindia
. Infant death

0
T1P1 47%

A bi-plot of the two main directions/principal components (total
variation explained 74%): size of the country and Poor versus Rich
“Outliers” are objects that do not fit the general behavior due to
errors, or in this case, due to abnormal behavior (“city-states”). Hong
Kong and Singapore dominate the solution. The user often has to
verify what is abnormal!

Introduction to Matlab + PCA and PLS - LIFE/KU -40 -

Example
Demographic data

7

46

T2iP2 73%

T1P1™ 46%

pop. agri. Tand 0 pop. per km2
«Barbado
=Taiwan
=Japan
=MNetherl
*Belgium
spauriti
*Puerto .
. \West Ge Yo Ilterat:q__
*Trinida| <Un King)
sJamaica ltaly or
students
g *Hundh ark O
ici arj *France
;:-# per physician *EbBlalaya «Pg 2 _qrgﬁﬁ@ﬁwe--en GNP(.__
sindia 5t SRRd .
+Guatems 'Nicagﬁ@g Fi3a USA
' infant death
0

By removing the two outliers we get a better view of the same
split-up: small but rich or rather, crowded but rich.

Introduction to Matlab + PCA and PLS - LIFE/KU

-41 -

Example
Demographic data

5
. # _§\t|. dents
46 *USA
per physician v
- *India oNP
infant death Malaya *Puerto
*Guatems
g *El §
[un)
~0
o
A
o Iiteratg,

0
T1P1 63%

We can also remove the “crowdedness” direction by removing
the appropriate variables from the data table. The new split: poor
(health related) versus rich based on (American) education system.

Introduction to Matlab + PCA and PLS - LIFE/KU -42 -

Example
Demographic data

Investigation and Visualization!

#_siudents

o
L

4
coT

T

{ GNP

infant death o o
o
L L)
3 - g (1550 o
o0 oG ool
% dﬁ o .Eﬁ »
'U.l* .Ell cE.I .ﬁ

% literate o

0
T1iP1 63%

Important: the interpretation is for the user. The labeling/coding
of objects is very important (visualization!). E.g. code in Industrial,
Unindustrialized and Eastern Europe (remember: the data is from
1980).

Another important issue: random reordering of rows or columns does
not affect the results (only look at variances). As a user you have to
keep track of the "“secondary” structure (e.g. a time series,
geographical or political ordering).

Introduction to Matlab + PCA and PLS - LIFE/KU -43 -

Principal Component Analysis
Diagnostics

» Score values t
Position of objects in the new factor-space

* Loading values p
Role of original variables in determining the new factor-space

* Percentage explained variance
Closeness between factor space (reconstruction) and original data space

* Leverage h
How important is an object compared the rest of the data set
h|,a = Et|,a’!(ta,-ta)

- Residuals e

How much structure/information remains after n-factors
objects: Ze? over rows variables: Ze? over columns

Of the many diagnostics that become available from a PC
analysis these five are the most used. Plotting them, keeping in mind
the data its “secondary” structure mentioned before, forms the basis
of exploratory data analysis.

Introduction to Matlab + PCA and PLS - LIFE/KU -44 -

Principal Component Analysis
Bi-linear model

| #1 #2 #3

0~ h AW -
E R A -
E R A -
E R - T

Introduction to Matlab + PCA and PLS - LIFE/KU - 45 -

Principal Component Analysis
Algorithm

min || X - t.p’ |2 X=tp’+E > E=X-tp’
min || X -t,.p,” -t,.p,” |2 = min || X - T.P’ |2

t'4=0/ p.p=0] is]

pi,'pi = ” P; ” =1 (X = (til'C).(pi’.C) + E) {scaling ambiguity}

p’ percentage explained variance:
(ZZ % - LT (%t p)2WEEX?; . 100%
hany faces:

+ MIPALS-algorithm (power method)

+ Eigenvalue decomposition (XX x=t» p=tX

+ Singular Value Decompositon X =UDP' =TPF

« Altarnating Least Squares X ~ AB' rotate=» X =TP

+ Principal Factor Analysis Orthogonal/Non-orthogonal rotation
+ Maximum Ep-pairs = minimum(objects, variables) - rank

In mathematical terminology the first factor is the least squares
rank one approximation of X. The second factor is the least squares
approximation of all that remains (the residuals E).

Furthermore we want the scores and loadings (impose one and the
other one comes for free) of successive factors to be orthogonal (inner
product zero).

All that remains is to remove the so-called scaling ambiguity: if we
divide the score-values by a constant ¢ and multiply the loadings by
this same c, we get the same solution. This holds for any c, thus we
have infinitely many solutions! To solve this inconvenience we specify
the length of loading vector p to one, thereby fixing ¢ (but any other
choice would have done).

Some terminology:

Bilinear modeling: PCA determines two least squares models, one in
variable space and one in object space (also see NIPALS algorithm
below).

Soft modeling: well... you impose the least squares criterion, but that
is all. Not physical, chemical, psychological, whatever-al functions are
predefined to get a particular solution.

Introduction to Matlab + PCA and PLS - LIFE/KU - 46 -

Principal Component Analysis
NIPALS algorithm

t -1
0 - choose starting t I |
1. p=Xtit) — > |=] (—
Y
2 -p=p/lipll
3-t=Xp/(p.p) IP
-1
4 - convergence? \
no = back to 1 |= N
5-X=X-tp t
backto O

The NIPALS algorithm (Non-linear Iterative PArtial Least
Squares) is given to illustrate how to determine PCA factors. It
consists of two least squares steps on the data table X: one to
compute the loadings, one to compute the scores. These steps are
repeated in sequence until no more changes in t and/or p are
observed. In the middle we have to norm the loading p to get ride of
the scaling ambiguity.

Introduction to Matlab + PCA and PLS - LIFE/KU -47 -

Principal Component Analysis
NIPALS algorithm

0 - choose starting t

1 -

2 -

3 -

4 - convergence?
no = back to 1

5-X=X-tp

backto O

Introduction to Matlab + PCA and PLS - LIFE/KU -48 -

Principal Component Analysis

Pre-processing

F-
9,;.
¢/
: %
| L
: factor 1
0 ! o
: o
e
1
\/ H# |
L 1
E ______________________________________ .
s !
8 I
> 1
1
1
1
1
1
I
1
» mean center !
- auto scale?)
« transformations? variable #1

As we saw before: the first factor finds all the variation that the
objects have in common, and goes through the origin. If there is an
offset (“"baseline”) - like in the picture - this will often be the main
variance. To get a more parsimonious model the data is almost always
mean centered before analysis by subtracting the mean of a column
from the entries in that column.

Other scaling-operations are sometimes used, where auto-scaling is
the most famous one. In auto-scaling each variable get the same
importance by setting the mean to zero (subtract the column average)
and variance to one (divide by the column standard deviation).

Alternative transformations can lead to completely other model
outcomes. The correct choice for transformations has to come from the
problem domain (e.g. knowledge on the types of measurements
preformed).

Introduction to Matlab + PCA and PLS - LIFE/KU - 49 -

Principal Component Analysis
issing values

X, =4h.p X, =tp, X 5=4.p;
> X%, =tp, wm tzpz X23=t2p
=t.p, xsz'tapz x33=t3p

0%

X
5% %
3y

S

oo |

PCA can handle a modest amount of missing data. The model
parameters (t and p) are estimated from a least squares fit by solving
many simple equations. If there is a missing value in the table we just
estimate the parameters from the equation that are complete. From
the estimates we can than reconstruct the missing entry.

Whether this trick works depends on the amount of missing data and
the structure in the matrix.

Introduction to Matlab + PCA and PLS - LIFE/KU - 50 -

Principal Component Analysis
Cross validation

how many factors: mathematical rank v. “true” rank

X “X+M” t,.p, tz.pz’ Xpot

I
-\

structure or noise?

The important question in PCA-modeling is how many factors are
relevant. The maximum mathematical rank of a matrix is the minimum
of the number of rows and columns. But often the true rank of a
system is much lower because the variables form (near) linear
combinations (co-linearity). An important indicator is the percentage
variance explained. This will always grow when increasing the model
complexity. But if the increase from one factor to the next is small it is
most likely noise you are fitting.

Another way to estimate the model complexity is cross validation. In
PCA this is achieved by setting (non-overlapping) diagonals to missing.
Next, the data table is reconstructed for an increasing number of
factors, and the reconstructed diagonals are compared to the original
entries. This procedure is repeated for all the diagonals. When the
reconstruction error drops from one factor to the next, the extra
component models real structure. When the reconstruction error
flattens out, the factor describes primarily noise.

Introduction to Matlab + PCA and PLS - LIFE/KU - 51 -

Principal Component Analysis
New bjects — project oh new basis

factor 1

variable #2

-,factor 2

“

1
1
1
1
1
1
| -
Linear combination |
of the original variables !
1
1
1

t = X3Py + XouPyo
to = X3Py + XouPop

variable #1

Ones you have a PCA model (= the correct number of loadings
p) you can project new objects (= a series of new measurements x)
and get a new set of “principal” variables (= the score values t).
In short: PCA defines coordinates/loadings p to filter the noise from
the interesting directions and expresses the objects/samples in a new
set of variables/scores t.

Introduction to Matlab + PCA and PLS - LIFE/KU -52 -

Principal Component Analysis
NIPALS algorithm

0 - choose starting t
1 -

2 -p=p/lpll

3 -

4 -

5-X=X-tp’

backto O

t -1

p=Xt/ () — 8 > |=) (—
p

t=Xp/(p.p) IP
-1
convergence? \
no = back to 1 |= .
t

Introduction to Matlab + PCA and PLS - LIFE/KU

- 53 -

Principal Component Analysis
Singular Value Decomposition (SVD)

X=UuDy ——— =

uu=u.u=lI

Vv=Vv.y =|

identity matrix | T=UD P=V

diagonal matrix D > SVD=PCA

with singular values XX =V.D.U.UDV =V.82\’
X XV=V.8?

- PCA = eigenvalue decomposition

Another interesting algorithm closely related to PCA is the
Singular Value Decomposition (SVD). This method (frequently used
inside PCA-software) decomposes the matrix X in three parts: the left
singular vectors U (the object space), the right singular vectors V (the
variable space) and the diagonal matrix D that has the singular values
on it diagonal, sorted in decreasing order.

The diagonal matrix immediately shows the structure of the matrix: a
few large singular values in the upper part represent the main
phenomena, while the (near) zero diagonal elements below are the
noise dimensions.

The left and right singular value matrices are both column-wise
orthonormal, which has a nice property for matrix inversion we will use
later on (U = U").

The SVD-decomposition can easily be turned into the PCA-solution. For
two-dimensional data (so-called first order data) the two
representations are equivalent. From SVD we also learn that PCA is an
eigenvalue decomposition of the association matrix X'.X (or X.X").

Introduction to Matlab + PCA and PLS - LIFE/KU - 54 -

Principal Component Analysis
Alternating Least Squares (ALS)

X=AB - min||X-APB |P E

A)7.(A’.A).B’

.(B".B).(B".B)"

lterating these two least squares steps will
give the same factor space as PCA, but ...

So why not go between NIPALS (one factor at the time) and SVD
(all factors at ones)? That is the Alternating Least Squares (ALS)
algorithm, computing the bilinear models for the number of factors N
you think are interesting. You start by picking a random A (the scores
matrix) or B (the loading matrix), and iterate until you find the
solution. The solution will span the same N-dimensional space as the
first N-PCA factors (the least squares solution), but ...

Introduction to Matlab + PCA and PLS - LIFE/KU - 55 -

Principal Component Analysis
Alternating Least Squares

... the solution is
(randomly) rotated
in the factor space.

factor 1

factor A,

factor 2

factor A,

in this ALS we did not impose the additional criteria from PCA
(orthogonal score/loading vectors, correct for scaling ambiguity), so
our solution is in the same space but rotated.

This is however no problem. You are free to select a new base within
the new factor space and any pair of axis will span the two-
dimensional plane (as long as they are not the same!).

Introduction to Matlab + PCA and PLS - LIFE/KU

- 56 -

Principal Component Analysis
ALS with constraints

Xoen = T.P"

A=T
iteration X
B’ =(A’A)".A’.X

< 0then B =0 20 30 40 50

entry =

If Bentry
) non-negativity

el=1
i) fix length

A= X.B.(B’.B)’
stop criterion

X, .=APB

The simple ALS algorithm opens the possibility to introduce
(additional) constraints in a factor model. In this example the object-
scores A are initialized as PCA scores T. Then an iterative ALS
algorithm is used to find a constraint factor model. The two constraints
are: all entries in the variable-loadings larger than zero (non-
negativity), and fix the length of the loading vectors to one (eliminate
scaling ambiguity). Constrains can assist in the interpretation of
assumed physical phenomena in a data analysis (e.g. spectra in curve
resolution problem).

By imposing the appropriate constrains (orthogonal solution vectors,
sorted by size), the relation between ALS, NIPALS and SVD becomes
obvious.

Notice that the two subspaces in this example (PCA versus ALS +

constrains) are not the same. We chose to alter the model (and
sacrifices fit) in favor of a non-negative loading vectors B.

Introduction to Matlab + PCA and PLS - LIFE/KU -57 -

Partial Least Squares regression

The next part of this document contains the transparencies used
in the lectures on PLS, accompanied by some “telegram-style” notes

on the main issues.

Regression

> B

s Find the relationship between predictor variables (X) and response
variables (Y) (independent/dependent)

e Aim is to predict unknown Y's for future X's (most often)

* Or, maybe to study X under the effect of Y (sometimes)

Regression methods
Partial Least Squares (PLS)

Introduction to Matlab + PCA and PLS - LIFE/KU

- 58 -

Regression methods
Data tables

Data table/matrix (X) Data table/matrix (Y)
EENiSRlES variables
objects N
(samples) # #2 #3 #1 #2
1 X X X
2 X X X
3 X X X
4 X X X
5 X X X
6 X X X
7 X X X
8 X X X
/
PLS1 /f PLS2

(Mspecial case™)

Partial Least Squares (PLS) can be used to build regression
models between a predictor block X and a response vector y. PLS has
the possibility to form a regression model with a table Y (so-called
PLS2), by determining a bilinear model for the response block and
computing with the pseudo variables/scores u. It is however not
always favorable to do so, and since PLS is rather unique in this
capability we will focus on the one response variable situation.

Introduction to Matlab + PCA and PLS - LIFE/KU - 59 -

Regression methods
General regression equation

(y = bg.1 + b,.x; + b,.X, + bs.X3)
y = by X4+ by Xy + by Xg

y=x.b

In its most simple form we are solving for b, a vector of
regression coefficients, and one coefficient for each variable in X. If y
is not mean centered an offset by can included.

Introduction to Matlab + PCA and PLS - LIFE/KU - 60 -

Regression methods
Multiple Linear Regression — MLR / OLS

y=Xb+f
X.y = X’.X.b
y —
(X X)1.Xy = (X X)1.(X.X).b I -
“\ ~ J
LX) (X X)=1"
(31
(X".X)".X.y=b
X!
(OLS/MLR solution) \ J

In a regression problem we are looking for a linear combination
of the variables in x that can predict the response y. This linear
combination is defined by the regression vector b, found from a least
squares solution. This Multiple Linear Regression (MLR) solution can
have some serious problems: is the predictor matrix X is (near) rank
deficient the inverse is very hard to compute (unstable solution), and if
the system is undetermined (more variables than objects) the solution
is even undefined.

Introduction to Matlab + PCA and PLS - LIFE/KU -61 -

Regression methods
Multiple Linear Regression — MLR / OLS

For an underdetermined system
(more variables than objects)
inverse does not exist

: - I

s N1
Also for (near) rank deficient matrix X
(mathematical or ‘true’) problems
will occur
X!
(OLS/MLR solution) . J

If the matrix X (“the system”) is underdetermined (more
variables/measurements than objects/samples) the inverse does not
exist. If two or more variables are collinear the inverse of a over-
determined (more or equal number of observations than variables)
might also not exist (singular or rank deficient system).

In practice many systems are “near rank deficient” - due to noise,
rounding errors, etc. - but computing inverse will be very unreliable.

Introduction to Matlab + PCA and PLS - LIFE/KU -62 -

Regression methods
Principal Component Regression — PCR

X=T.PP+E (pca
q

y=Tq+f{ y |

|-
T.y=T.T.q
(T'"DHLT.y=(T.T)'.(T".T).q ~ -1
(T'"DH1.T.y=q

>

(PCR solution, y = X.b = X.P.q)

To overcome the problems in MLR we need to regularize the
regression solution. One obvious candidate is to substitute the original
variables by a smaller set of more relevant variables: the scores from
a PCA analysis (the Principal Component Regression model). The score
vectors are by definition orthogonal, leading to a well-conditioned
inverse, and PCA can never extract more factors then the maximum
rank of X, so the inverse is never underdetermined.

Introduction to Matlab + PCA and PLS - LIFE/KU - 63 -

Regression methods
Principal Component Regression — PCR

orthogonal! squared eigenvalues/
X=T.PP+E {pca) ° ‘ singulargvalues
y=T.q+f 10 1
T.T= 0.01
T.y=T.T.q ~0
(T.DATy=T.T).(T.T).q i
(T T'.T.y=q
110
1M
(T.T)" = 1/0.01
1/~0

(PCR solution, y = X.b = X.P.q)

The concept of a regularized inverse is best illustrated using the
SVD to compute a PCR solution. We end up with computing the inverse
of the diagonal matrix D, which is easy because the inverse of a
diagonal matrix is just the inverse of the elements on the diagonal.
Remember that D has the singular values (squared eigenvalues) in
decreasing order as its entries. For the interesting part (upper corner)
we have large singular values, and the inverse can be determined
relatively easy. For the small singular values (lower corner; the noise)
the inverse can “blow up”: you end up with enormous numbers that
completely dominate the inverse and thus the regression solution. If
the last singular values are zero (something that seldom happens for
real data) the inverse is undefined altogether.

Introduction to Matlab + PCA and PLS - LIFE/KU - 64 -

Regression methods
Principal Component Regression — PCR

X=T.P +E (pca)
y=T.q+f 10 1
T.T= 0.01
T.y=T.T.q ~0
(T'" LTy =(T.T)'(T".T).q
(T'"H1.T.y=q +49
1M1
(T".T)" = 1/0.01
-0
0 —//\L__#u
_ 7
(PCR solution, y = X.b = X.P.q)

Introduction to Matlab + PCA and PLS - LIFE/KU - 65 -

Regression methods
Bias-variance trade-off

optimal model

variance
bias {(parameter uncertainty)

(truncated solution)

1 factors —» max
(MLR)

The observation on the other page is the heart of factor-models:
you want to include the factors/principal components/latent variables
that are significant but in doing so you disregard smaller dimensions,
introducing a bias in the parameters/solution. The gain is more stable
parameter estimation, because the difficulty in estimating factors in
the smaller/unstable dimensions is avoided. Somewhere there is an
optimal model complexity in number of factors: the bias-variance
trade-off.

Introduction to Matlab + PCA and PLS - LIFE/KU - 66 -

Regression methods
Principal Component Analysis - concept re-revisited

e Principal Component Analysis determines factors from a data table by
making new ‘pseudo’-variables (so-called principal components) from
linear combinations of the original variables

X

s The factors (principal comp ts) are selected to explain as much
information (variance) in the table as possible
By drawing the new axis/coordinates along the main (principaf)

direction in th&\ cloud

e The new variables eliminate redundant information (and filter noise)
from the original data table

Introduction to Matlab + PCA and PLS - LIFE/KU -67 -

Regression methods
Partial Least Squares - PLS

BUT... max (cov(t,u) | Xw =1t |[w [=1)
Why focus on , :
X-variance X=tp’+E > E=X-tp

Y=tq+F > F=Y-tq

PLS1: u=y . Y
PLS2: ("special case”) (PLS solution, y = X.b = X.W.(P’.W)".q)

what are we regressing on?

So far the new factor-coordinate system was selected to explain
as much of the X-variance as possible. There is however no guarantee
that this set of loadings (or rather the scores formed by projection) is
suitable for predicting y.

In PLS an alternative set of coordinates in the form of loading-weights
W is defined. The criteria of selection are to both explain variance in X
(to get a stable inverse) and correlated the direction with y (or u in
the case of multiple y's; to get good predictions): maximize the
covariance. This more-or-less heuristic decision to make the two
criteria equally important works well in practice and often leads to
simpler models than e.g. PCR.

Introduction to Matlab + PCA and PLS - LIFE/KU - 68 -

Regression methods
Partial Least Squares - PLS

i +
PLS strikes a Y variable ks,

. o
compromise %
between explaining factor 1 %
variance in

(predictor) X and
finding correlation
with (response) y

X variable #2

Covariance (tu)

= Variance(X) to have a
goodistable new basis in the
predictor variables

= Coly) to have predictive
ability

= Mot carrelation {eg. MLR;
why not?)

X variable #1

A (futile) attempt to visualize PLS: next to the three variable
space of our X-block we have a one variable space of the y-block
(non- overlapping spaces!). The original factor 1 is tilted (out of the
plane!) in the direction of the y-space. Hence, PLS is a skewed
projection. It is easier to imagine this in the object space (three x- and
one y-variable both in eight dimensional spaces for this example) but
that is impossible to draw.

Introduction to Matlab + PCA and PLS - LIFE/KU - 69 -

Partial Least Squares
Diagnostics; e.g. non-linearity

plot t v. y (or u for multiple y’s)

=]

The actual regression part inside PLS is a simple, univariate,
linear regression between the predictor/X pseudo variables t, and the
responses/y or the pseudo variables u in case of multiple y’s.

A point on regression factor-models: non-linearity in the parameters. A
good way to detect non-linearity is to plot the two participants in the
regression equation: t versus y.

PLS is able handle modest non-linearity by simply including more
factors. Many authors have attempted to tackle linearity issue by
defining more complex regression equation inside the PLS algorithm
(the so-called inner relation between t and u/y). Unfortunately the
relations are often too complex (e.g. detector saturation) to find an
easy/general solution.

A good tip when you expect non-linearity is to augment the data-block
X with its squared form X°.

Introduction to Matlab + PCA and PLS - LIFE/KU -70 -

Example
Demographic data

Austral
Austria
Barbado
Belgium
Brit Gu
Bulgari
Canada
Chile
CostaR
Cyprus
Czechos
Denmark
El Salv
Finland
France

@
i
7}
i
L
=]
@
q

West Ge
Yugosla

Gunts and Mason 'Regression analysis and its applications: A data-oriented approach’, Marcel Dekker 1980

We use again the same small example as a reminder: socio-
economical status of 49 countries world-wide determined by 7
indicator variables/demographic.

In the regression problem we try to predict “percentage literate above
age 14" for the last 9 countries using the first 40 as training set.

R.F. Gunst and R.L. Mason “Regression Analysis and Its Application: A
Data-Oriented Approach” Marcel Dekker, New York, p. 358(1980)

Introduction to Matlab + PCA and PLS - LIFE/KU -71 -

Example
Demographic data

17
Percentage literate
—_ above|age 14 .
)
= N Covariance (t,u)|d
o 15
) /
K

13

1 2 3 4 5
factors

%,

7%%:‘%

8
0
o
-10

A three factor model gives slightly better RMSP., than a one
factor model, but maybe only one factor is sufficient.

Regression coefficients show that “percentage literate above age 14"
negatively related to physicians and infant deaths. This same response
variable is positively related to predictor variable GNP. This is in good
agreement with the findings in the Principal Component Analysis.

Introduction to Matlab + PCA and PLS - LIFE/KU -72 -

Example
Demographic data

120

100

80

60

40

20

percentage literate above 14

B reference | predicted
Switzer USA
Sweden Un King USSI:veSt Ge
Trinida st
Taiwan

Overall the predictions of percentage literate from the other five
socio-economical descriptors are good. Exceptional countries found in
the PCA are also predicted relatively bad (Taiwan as a typical island
state and USA which has (or had in 1980) a different university

educational system).

Introduction to Matlab + PCA and PLS - LIFE/KU

Example
Demographic data

RMSP,.., = 11.5%

test — 11T e I

= infant death gosta™ T N
E = cf“‘?ni’tl R, .. T

s L R eRes L

= 90 . SWHISP | GNP ysp
x | e . T # students
2

)

o

o

l—

The exceptional position of the USA also becomes clear by
looking at the bi-plot for the first three PLS factors.

Introduction to Matlab + PCA and PLS - LIFE/KU - 74 -

Partial Least Squares
Cross validation

how many factors: mathematical rank v. ‘true’ rank
leave-one-out cross validation

model predict

X — B —

— yn

= 2
RMSPCV = \[(E(y - yhat) /n)
root mean squared error of prediction
(find best bias-variance trade-off)

In factor regression problems we have to determine the optimal
model complexity. This can be done by leave-one-object-out (or leave-
a-particular-set-out) cross validation. We are looking for the minimum
of the bias-variance RMSP-plot (in practice a no-longer-a-significant-
drop, to get parsimonious models).

Introduction to Matlab + PCA and PLS - LIFE/KU - 75 -

Partial Least Squares
Diaghostics

* Predictive performance
Cross validation/test-set

- Regression vector b,

{Factor model, see PCA)
+ Score values t, and u,
Position of objects in the new factor-space

* Loading values p, and q,
Role of original variables in determining the new factor-space

* Percentage explained variance
Closeness between factor space and original data spaces (X or Y)

* Leverage h,
How important is an object (or variable) compared to the rest of the data set

* Residuals e, and f,
How much structure/information remains after n-factors

In PLS regression modeling we have the same + some more

diagnostic tools as in PCA.

Introduction to Matlab + PCA and PLS - LIFE/KU

-76 -

Linear Algebra /7 PCA

In this part of the text we will use linear algebra methods and
SVD/PCA to get some more experience in using the Matlab program.
Let's start by generating some data. First we define two “true”
loadings (Gaussian-curves of length 100) and two times ten “true”
scores
>> pl = gauss(100,65,8)";
>> p2 = gauss(100,35,6)";
>>tl = [1:10]’;
>>t2 = [3:-.1:2.1]" + randn(10,1)*0.5;

From this we generate our data matrix X, adding some noise, and plot
the results

>> Xclean = t1*pl' + t2*p2';

>> X = Xclean + randn(size(t2*p2"))*0.003;

>> plot(1:100,Xclean,'b",1:100,X,'g");

>> grid;

We can define labels for the ten objects/samples in our set
>> Objlab = ['#0';'#1";'#2";"#3';"#A4' ;' #5''#E' ' #T''#8''#9']

To compute an SVD on this data table enter (function “diag” selects
diagonal entries)

>> [U,D,V] = svd(X);

>> d = diag(D)

>> plot(1:10,diag(D));

Check to see if the criteria defined in the figure on SVD are fulfilled:
UU" = U'U = 10I'% W' = V'V = 100I'%, D = diagonal and sorted
according to size, etc.

How much of the variation in X, in percentage, is explained by the first
factor? We can compute this directly from the singular values in *D”
>> d(1)"2/sum(d.”~2)*100

And how about the cumulative percentage variation explained for the
first two factors? Try to dissect this Matlab command line
>=> sum(d(1:2).7~2)/sum(d.”~2)*100

To get the first three PCA scores and loadings from the SVD

decomposition simply compute
>>T = U(:,1:3)*D(1:3,1:3);

Introduction to Matlab + PCA and PLS - LIFE/KU -77 -

>>P = V(:,l:s);
>> plot(1:100,P(:,1:3));
>> |legend('P1','P2','P3")

Now try the same SVD decomposition for the clean data set (without
noise, “Xclean” from above). What is the effect of adding noise? Try
the Matlab commands “rank” and “cond” (= condition number).

To see e.g. the relation between the first true scores “t1” and
the scores on the first PCA factor “T” (“text” puts the strings in
“ObjLab” on position x,y)
>> plot(t1,T(:,1),".");
>> xlabel('t1");
>> ylabel('T1")
>> text(t1,T(:,1),0bjLab)

The correlation coefficient between “t1” and the estimate “T(:,1)"” can
be computed as follows (on the diagonal is the correlation coefficient
of a vectors with itself, which is of coarse always 1)

>> R = corrcoef(t1,T(:,1))

The squared correlation coefficient (= explained variance) is
>> R(1,2).\2

How about the second set of true scores “t2"?

To study the alternating least squares (ALS) algorithm we need
some more code (assign a random starting point in “A”, “inv”
computes the inverse of the matrix)
>> A = randn(10,2);
>> for a=1:100, B = (inv(A"™*A)*A'*X)"; A = X*B*inv(B'*B); end

This script does not specify a real convergence criterion. It just
iterates/loops true the two steps one hundred times (the “for ... end”
Matlab command), assuming the minimum in the least squares
solution is found by then.

Lets plot the results

>= figure

>> subplot(2,1,1); plot(1:100,B); title('loadings")

>> subplot(2,1,2); plot(tl,A(:,1),".-",t2,A(:,2),".-"); title("'scores")

Introduction to Matlab + PCA and PLS - LIFE/KU -78 -

Try this ALS+plot procedure a couple of times (open a new figure
window each time) with new random starting values in “"A”. What are
the differences and similarities between solutions? How are these
solutions different from the SVD/PCA results found earlier?

Regression / PCR

In this part we will look at some regression equations in Matlab.
Let's start by generating some data (same as in "PCA” part).
>> pl = gauss(100,65,8)";
>> p2 = gauss(100,35,6)";
>>tl = [1:10]’;
>> t2 = [3:-.1:2.1]" + randn(10,1)*0.5;

Then we generate our data matrices plus some noise

>> Xclean = t1*pl' + t2*p2';

>> X = Xclean + randn(size(t2*p2'))*0.003;

>>y =1tl + t2 + randn(size(t2))*0.1;

>> ObjLab = ['#0";'#1";"#2";'H#3";"#4";'H#5";'"#6";"#7";'H#8";'#9"]

To compute an SVD on this data enter
>> [U,D,V] = svd(X);

From this decomposition we compute the Multiple Linear Regression
(MLR) solution (10 object by 100 variables, so the maximum number
of factors is 10) and plot it

>> p10 = V(:,1:10)*inv(D(1:10,1:10))*U(:,1:10)"*y

>> plot(1:100,b10);

This will look like a lot of noise! Why is that? We included too many
factors. Let's look at the 1, 2 and 3-factor Principal Component
Regression solutions instead

>> bl = V(;,1:1)*inv(D(1:1,1:1))*U(:,1:1)"*y

>> b2 = V(;,1:2)*inv(D(1:2,1:2))*U(:,1:2)"*y

>> b3 = V(:,1:3)*inv(D(1:3,1:3))*U(:,1:3)"*y

>> plot(1:100,[bl b2 b3]);

>> legend(‘'bl’,'b2','b3")

We can also predict (or rather “fit” in this case) the y-values
>> ypl = X*bl;
>> yp2 = X*b2;
>> yp3 = X*b3;
>> plot(y,yp1l,'.-

, Y,yp2,'.-", y,yp3,'.-"); grid

Introduction to Matlab + PCA and PLS - LIFE/KU -79 -

>> |legend('1l factor’,'2 factors’,'3 factors');
>> line([2 14],[2 14))
The “line” command plots a line: offset 0, slope 45°.

NIR with temperature effects

A set of Near InfraRed (NIR)" spectra is available in the Matlab
data-file "NIRdata.mat”. This set (three X-blocks “specXX”: 19 x 512;
spectra recorded at 30°C, 50°C and 70°C) is part of a larger triangular
design formed by mixtures of ethanol (first column in “conc”: the Y-
block with mass fractions of the constituents), water (second column)
and iso-propanol (third column). The corner points of the design (the
pure components/spectra) are removed from the main set, but are
available in the data-file. The Matlab variable “ObjLab” contains
appropriate name-labels for the objects (see first figure below for the
design).

") Florian Wiilfert, Wim. Th. Kok and Age K. Smilde “Influence of temperature on
vibrational spectra and consequences for the predictive ability of multivariate
models” Anal.Chem.(1998)1761-1767

To plot the mixture design points:

>> clear all

>=> close all

>> |oad NIRdata

>=> plotNIRDesign(conc)

>> text(conc(:,1),conc(:,2),conc(:,3),0bjLab)
>> xlabel(‘ethanol")

>> ylabel(‘water")

>> zlabel(‘iso-propanol’)

Introduction to Matlab + PCA and PLS - LIFE/KU - 80 -

J Figure 1

File Edit ew Insert Tools Desktop wWindow Help N

DedE kh RaQfe € 08B 80

064"

iso-propanol

water ethanol

Use the rotate button to get a better view of the design!

Next, have a look at the temperature influence by plotting the pure
components of the mixtures:

>> figure

>> subplot(3,1,1)

>> plot(wavelen,[ethanol30; ethanol50; ethanol70])
>> |egend(*30C','50C","70C",2)

>=> title(‘'ethanol")

>> ylabel("'A.U.")

>> grid

>> subplot(3,1,2)

>> plot(wavelen,[water30; water50; water70])

>=> title('water")

>> ylabel("A.U.")

>> grid

>> subplot(3,1,3)

Introduction to Matlab + PCA and PLS - LIFE/KU - 81 -

>> plot(wavelen,[isopropanol30; isopropanol50; isopropanol70])
>> xlabel(‘'wavelength (nm)")

>> ylabel("A.U.")

>> grid

>> title(‘iso-propanol’)

_Figure
File Edit ew Insert Tools Deskiop wWindow Help
DedE kh A0 ® © 08 80
ethanal
0.1 i : : : :
— 30C ; ; :
3 gH ——50C A
< —— 70C : . : :
01]]]]]
500 /00 700 800 900 1000 1100
water
0.5 : : : : :
j _________ E —_'m_—_
< ! s s
05]]]]]
500 600 700 a00 900 1000 1100
iso-propanol
0.1 T T T T T
T o oy
= 0
01 | | | | |
/00 700 800 900 1000 1100
wavelength (nm)

Use the zoom button for a detailed view. What is the chemical nature
of the changes?

The different mixture-spectra look as follows:
>> figure

>> subplot(3,1,1)

>=> plot(wavelen,spec30,'b")

>=> ylabel("A.U.")

>=> grid

>> subplot(3,1,2)

>=> plot(wavelen,spec50,'g")

Introduction to Matlab + PCA and PLS - LIFE/KU -82 -

>=> ylabel("A.U.")

>> grid

>> subplot(3,1,3)

>> plot(wavelen,spec70,'r")
>> xlabel(‘wavelength (nm)")
>> ylabel("A.U.")

>> grid
J Figure 3
File Edit ew Insert Tools Deskiop wWindow Help N
Ded&E k e © 0B 80
0.1 : : :
i T O I
= 0
01 | | | | |
500 600 7o0 a00 900 1000 1100
02 | | | | |
s T O O N S TR o et Sty al
= 0
02 | | | | |
500 600 7o0 a00 900 1000 1100
02 [[[[[
s T
= 0
0o | | | | |
500 600 7o0 a00 900 1000 1100
wavelength {nm)

A SVD/PCA analysis of the 30°C data-set could go as follows:
>> [U30,D30,P30] = svd(spec30);
>> T30 = U30*D30;

Have a look at the loading-vectors (pseudo spectra); how do they

compare to the raw spectra? How much variance is explained by the
first four factors (use D30)? What is the rank of this system? What

Introduction to Matlab + PCA and PLS - LIFE/KU - 83 -

should the rank from a chemical point of view? And what about
closure?

Can you still find the design (use rotate) plotting the scores of the first
three factors?

>> figure

>> plotNIRDesign(T30(:,1:3))

>> xlabel("PC1"); ylabel('PC2"); zlabel("PC3");

If you rotate this plot you will see it looks like a plane (representing
the mixture design) in a 3D room. What we did not do in our SVD/PCA
analysis above is mean centering the data before decomposition. But
this is by now “easy” in Matlab (hints: first we determine the size of
the matrix, then we compute the mean spectrum - thus over the
columns in the row direction; finally a trick: we subtract a matrix from
the data build from the outer product of a vector of ones and the mean
spectrum. What happens here? Check the outer product.)

>> [N,M] = size(spec30);
>> mean_spec30 = mean(spec30,1);
>> spec30c = spec30 - ones(N,1)*mean_spec30;

Check the result of the mean centering pre-processing

>> figure

>> subplot(2,1,1);

>> plot(wavelen,spec30,'b’,wavelen,mean_spec30,'g"); grid;
>> subplot(2,1,2); plot(wavelen,spec30c,'r"); grid;

And try SVD/PCA on this

>> [U30c,D30c,P30c] = svd(spec30c);

>> T30c = U30c*D30c;

>=> figure

>> plotNIRDesign(T30c(:,1:3))

>> xlabel("PC1"); ylabel('PC2"); zlabel('"PC3");

What happend to the rank and the singular values in *D30c"? What
happened to the image of the design in the score plot?

Try the same for the mixture-sets recorded at 50°C and 70°C. What
effect does temperature have on the results?

Introduction to Matlab + PCA and PLS - LIFE/KU -84 -

Basic Statistics

To study some basic we will use a small example of 10 pH

measurement from one solution. The data is as follows

>=> clear all
>=> close all

>> pH1 = [4.90 5.06 5.05 5.17 5.06 4.94 5.04 4.90 5.00 5.00]";

The first thing to do when collecting new data is to plot it!!!

In this case we have the 10 observations, a so-called box-and-
whiskers plot, the histogram (with a normal or Gaussian distribution

imposed) and the normal probability plot

>> figure
>>subplot(2,2,1);

>> plot(pH1,ones(1,length(pH1)),".","MarkerSize',20);

>> grid; title('pH1");

>> subplot(2,2,2);

>> poxplot(pH1,'notch’,'on");

>> title('Box plot pH1');

>> subplot(2,2,3);

>> normplot(pH1);

>=> title('"Normal prob. plot pH1");
>> subplot(2,2,4);

>=> histfit(pH1); grid;

>> title('"Histogram pH1")

Introduction to Matlab + PCA and PLS - LIFE/KU

- 85 -

-} Figure 1

File Edit Miew Insert Tools Desktop Window Help N
DedES k RO e® © 0B 80
pH1 Box plot pH1
2 =
SN S S—
i i n
1»---» HECEII CEE CEEEEE - %
> 5
U_E __________ . N,
0 ! ! 49 .
49 b 51 52 1

Column Mumber
Histogram pH1

0.95 |
0.90 |

075 |:
050 !
0.25 |---

010 |
0.05

Probability

This data-set is a little small to study the normal probability plot and
the histogram function. Try the following code which generates to
vectors with 200 random numbers each

>> figure

>> xn = randn(1,200); x = rand(1,200);
>> subplot(2,2,1); histfit(xn);

>> subplot(2,2,2); histfit(x);

>> subplot(2,2,3); normplot(xn);

>> subplot(2,2,4); normplot(x);

What is the difference between random numbers generated by “rand”
and “randn” (use the help function)?

Compute the important statistics for this pH data-set: mean standard
deviation, relative standard deviation and standard error of the mean

Introduction to Matlab + PCA and PLS - LIFE/KU - 86 -

(make sure you understand both the meaning of these numbers AND
the Matlab commands to calculate them)

>> m_pH1 = mean(pH1)

>>s pH1l = std(pH1)

>> RSD pH1 =s pH1/m_pH1*100
>> SE_m_pH1 = std(pH1)/sqgrt(10)

The 95% confidence interval can be formulated as follows (“tinv” is a
function equivalent to the student-t lookup table; note 5% two-sided it
2.5% or 0.25 for each side)

>> t95p = tinv(0.975,length(pH1)-1)

>> L = m_pH1 - t95p*SE_m_pH1;

>> U = m_pH1 + t95p*SE_m_pH1;

>> disp([num2str(L,3) ' < mu pH1 < ' num2str(U,3)])

Next step is the comparison of two data-sets. We make a second
vector with pH values and plot the result

>> pH2 = [5.10 5.07 5.21 4.91 5.14 5.195.17 5.16 5.10 5.17];
>> figure

>> subplot(2,1,1);

== plot(pH1,0nes(1,length(pH1)),".b',pH2,2*0ones(1,length(pH2)),'.g","MarkerSize',20);

>> grid; title('pH1 and pH2");

>> subplot(2,1,2);

>> poxplot([pH1 pH2],'notch’,'on"); title('Box plot pH1 and pH2");

Are the two pH-series the same? To compare them we can use the so-
called Fisher F-test, based on the ration between Treatments (= the
two pH series) and the total error/uncertainy (“finv” is a function
equivalent to the F lookup table; again, make sure you understand
both the meaning of these numbers and the Matlab commands to
calculate them)

>> MStreatment = sum(10*([mean(pH1);mean(pH2)]-mean([pH1;pH2])).~2)/(2-1)
>> MSerror = sum([(pH1-mean(pH1)).~2;(pH2-mean(pH2)).~2])/(20-2)

>> F = MStreatment/MSerror

>> ¢ = [0.75 0.90 0.95 0.975 0.99];

>> [100-c*100;finv(c,1,18)]

From the list we see that finding these 2 x 10 numbers, under the

assumption that the pH’s of the two series where the same, is smaller
then 1%.

Introduction to Matlab + PCA and PLS - LIFE/KU - 87 -

Linear Regression

We will use the NIR spectra from above to implement univariate
linear regression in Matlab. If we want to predict the water contents in
our samples we could use e.g. the absorbance value at 950nm
(confirm this from the spectral plots above; closely study the way we
find 950nm in the variable “wavelen”; remember water is the second
column in “conc”)

>> clear all

>> close all

>> load NIRdata

>>y = conc(:,2);

>> [dummy,index950] = min(abs(wavelen-950));
>> wavelen(index950)

>=> X = spec30(:,index950);

J Figure 1

File Edit ew Insert Tools Desktop indow Help N
NeEE h RAMH® ¥ 0BE 81
0.7 : : : : : : : :
1 1 1 1 1 1 1 L. d *
- S U NN APNMNS SN S N —
) SR SRS PO SUME SUUMU SUPOVUII SRPNUE SORIRY SO
L]
-
Lkl
kT : : : : : : : :
B e e B RGLC —
E“' 1 1 1 1 1 1 1 1
=
-G o, g
L e I S e e
=
o i i i i i i i i
B e i R s e e e e
i *i' i i i i i i
e S e
0yl i i i i i i i
001 0015 002 0025 003 0035 004 0045 005 0.055
Abs. 950nm

Introduction to Matlab + PCA and PLS - LIFE/KU - 88 -

A plot of water fraction as a function of the absorbance at 950nm looks
as follows

>> figure
>> plot(X,y,".")
>> grid; xlabel('Abs. 950nm"); ylabel("Water (fraction) reference');

Next we form our matrix of independent X, where we add a column of
ones for the offset (the by term). From this matrix and the dependent
y we can estimate our unknowns in the regression equation ywater = bo
+ Xos0nm.D1;

>> X = [ones(size(X)) X];
>> b = inv(X"*X)*X'*y

To see how our model performs we estimate our water fractions and
make the regular predicted-versus-reference plot (red line is the ideal
line: offset zero, slope 1), the Root Mean Square error of Prediction for
fit (Why is this fit, and nor real prediction? Check the formula for
RMSP, working from the inside to the outside), and the correlation
coefficient

>> yhat = X*b;

>> figure

>> plot(y,yhat,".’,[O 1],[0 1],'r")

>> grid; axis square; xlabel("Water (fraction) reference');
>> ylabel("Water (fraction) predicted/fitted");

>> rmsp_fit = sqrt(mean((y-yhat).”™2))

>> corrcoef(y,yhat)

Alternatively we can plot our estimates together with the original
absorbances

>> figure
>> plot(X(:,2),y,".". X(:,2),yhat,"+g",[0 max(X(:,2))].[[1 0]*b [1 max(X(:,2))]*b],'b")
>> grid; xlabel('Abs. 950nm"); ylabel("Water (fraction) reference');

Why is this regression model of NIR spectra to predict water not very
good (hint: have another look at the spectra)? And how could we
improve it (hint: what about switching to MLR or PLS including e.g.
absorbance wavelength 908nm - now we are back at the origin of
Chemometrics again)?

Introduction to Matlab + PCA and PLS - LIFE/KU - 89 -

Here is some “quick and dirty” steps to achieve MLR
>> [dummy,index908] = min(abs(wavelen-908));
>> X = [X spec30(:,index908)];

>=> b _mlr = inv(X'*X)*X"*y

>> yhat_mlr = X*b_mir;

Introduction to Matlab + PCA and PLS - LIFE/KU

- 90 -

Linear Algebra

Linear Algebra

a = scalar, b = (row) vector, ¢ = (column) vector, D = matrix

Conventions:

= vectors and matrices in bold, matrices as capitals
» vectors are column vectors

= ‘or T = transpose = flip rows and columns

Linear Algebra

C is of size nxm = 3x2 (3 rows, 2 columns), a and b are of size 3x1

Conventions:
= matrix = build from vectors
= indexing elements in matrices (= scalars): first row index, then column index

Introduction to Matlab + PCA and PLS - LIFE/KU -01 -

Linear Algebra
Matrix (and vector) addition

Linear Algebra
Matrix (and vector) scalar multiplication

Introduction to Matlab + PCA and PLS - LIFE/KU

-92 -

Linear Algebra
Vector multiplication

Linear Algebra
A vector can be seen as a point in space: direction and size

I

Introduction to Matlab + PCA and PLS - LIFE/KU

[xyz]"=[003]

:;_'j'_i ________ ‘['};(/y z]=[123]

[xyz]'=[100]

[xy z]"=[02 0]

- 03 -

Linear Algebra
Matrix multiplication

Linear Algebra
Orthogonal and ocrthonormal vectors

3x[0 0 1]T

L al=[123]

= 4

121 0]; 110 O]

20 1 0"

Introduction to Matlab + PCA and PLS - LIFE/KU -94 -

Linear Algebra

Solving for unknowns

In order to answer these question we
have to know the “rank” of matrix X.

Rank is the number of independent
rows or columns. (See SVD later on)

If this is not the same as the size of X
(3 in this case) the matrix is “rank
deficient” or singular and there is ho
solution.

Linear Algebra
Solving for unknowns

Introduction to Matlab + PCA and PLS - LIFE/KU - 0§ -

Linear Algebra
Singular Value Decomposition (SVD)

There are many way of computing the inverse of a matrix!
Here we only cover one: Singular Value Decomposition.

- V
K
u

Linear Algebra

Singular Value Decomposition (SVD)

We set out to solve for the unknowns in a linear system of equations
X is full rank (all three singular values # 0), inverse exists

N

Introduction to Matlab + PCA and PLS - LIFE/KU - 06 -

We set out to solve for the unknowns in a linear system of equations

Linear Algebra
Singular Value Decomposition (SVD)

Introduction to Matlab + PCA and PLS - LIFE/KU

-97 -

Basic Statistics

Some basic statistics
Sample and population

Samples: 10 pH-measurements
taken from flask 1

Population: all the possible pH-
values to be found in flask 1

We assume continuous
distribution in population {not
always the case; e.g. pH in
European rivers)

Some basic notions
Expectation and population parameters

Expected value - sample statistic for n observation

Mean Locality

Variance Spread

Eg: Normal distribution N(p,,,5,)

Notice: p and ¢ are -
Observations

population constants -

N

A

Introduction to Matlab + PCA and PLS - LIFE/KU - 08 -

Some basic notions

95% confidence intervallevel; 17 large or s, givent, , = z,=1.96

Some basic notions

Critical t-values

(a) a is users choice
(b) Increasing for a

(c) Decreasing for n O W
d) n large (or 6 k s lves 025 pobateny
(d) n large (or 6 known) o

¢ Critical Points (8) () ———

%z 67 128 184 1.96 233
@ -

Zay = Zao = Zos = Zaas = Zow

= Zgos = Zpozs = Zooio = Zooos

CEE Lay Fia L [Lo laos [Loonn L
([: 1 100 3.08 631 127 318 63.7 127 318 637
2 .82 189 292 430 696 9.92 14.1 22.3 31.6
3 76 164 235 318 454 5.84 745 10.2 12.9
4 74 153 213 278 375 4.60 5.60 717 8.61
5 .73 148 202 257 3.36 4.03 4.77 5.89 6.87
6 .72 144 194 245 3.14 an 4.32 5.21 5.96
7 .71 141 189 236 3.00 3.50 4.03 4.79 541
8 .71 140 186 231 290 3.36 3.83 4.50 5.04
9 70 138 183 226 282 3.25 3.69 4.30 4.78
30 68 131 170 204 246 2.75 3.03 339 3.65 |
40 BB 130 1.68 2.02 242 2.70 2.97 3.31 3.55
60 .68 1.30 1.67 200 239 2.66 292 3.23 3.46
120 .68 1.29 166 1.88 236 2.62 2.86 3.16 3.37
2.58 2.81 3.09 3.29

Introduction to Matlab + PCA and PLS - LIFE/KU

- 99 -

Sample statistics (= descriptors in humbers)

Some basic notions

4.80

[et]

5.06

5.05

517

5.06

4.94

5.04

4.80

5.00

5.00

Assumption: Normal distribution N(x,_,s,)

Example

Comparing two samples

[et Tenz]
430 5.10
506 507
505 521
517 491
506 514
494 5.19
504 517
490 516 47 48 4.9 5 5.1 52 53
500 5.10 pH
500 517 -

pH 2

Introduction to Matlab + PCA and PLS - LIFE/KU

- 100 -

Plotting
Distribution free representation

Box-and-Whisker plot -

. .
:
1
1-I
1
1
1
1
1
1
1
*
owtior| +

Plotting
Multi comparison

+ Box-and-Whisker plot
== I
I I
— 1 i
1 : 1
1 : I I
1
] -]
I H : i
j == e
| +
= 1
==
Comparison: \/ \/ X \/

Introduction to Matlab + PCA and PLS - LIFE/KU - 101 -

Plotting
Normal probability

. Normal Probability Plot
0.98 v
095
090

075
050

035 /
0.10 /

005 '..."' V
002 N

001‘/

Probability

Data

Plotting
Normal distribution

Histogram

Introduction to Matlab + PCA and PLS - LIFE/KU -102 -

Plotting
Normal probability

Normal Probability Plot =
a9
098 +
s/
085
090 4
075

Frobability
(]
[y
o

025
.
010 +*+
. * "‘/’
005
*
0oz
001 5 /
Lagarithmic transformation
0 0z 04 08 08 1 12 1
Data

Plotting
Normal probability

0.999
0.99

0.95
0.90

0.78
0.50
0.28

0.10
0.08

0.01
0.001

V.
P
4
r
yd
7
-',/
| /S
+4
5 - 2 2 4

Introduction to Matlab + PCA and PLS - LIFE/KU

- 103 -

Hypothesis testing
Some basic definitions

--------------......'.’.----.--“---------‘-------.....m
Expected value - sample statistic for n observation

Mean Locality

Variance Spread

‘The question’

Hypothesis testing (also significance testing)

Hypothesis testing
Comparing intervals

[et [enz]
490 5.10
5.06 5.07
505 5 PH A rerreeeeesaieieaee s nnnnnnnnnn
517 491 (13 WARTEREECEECEELE @-rrernenannans PP P
5.06 5.14 = = - - = = -
494 5.19 pH
5.04 517
5.00 5.10
5.00 517

Assuming the variance in flask 1 and 2 is the same:

(n-1).8%; + (ny-1).% 0.0630 + 0.0666
Szpnnled = = =0.0072
(ni-1) + (nz1) 9+9
—

9 degrees-of-freedom (df) in estimating
each of the standard deviations

Introduction to Matlab + PCA and PLS - LIFE/KU -104 -

Errors
Random versus systematic

Error: difference between true and observed value

e(i) = x(i) - p,
e(l) = (X(I) - Xbar) + (Xbar - px)

Trus value W, (I53): " The value which — —_—
characterizes a guantity perfectly definedin - random systematic
the conditions which exist at the moment when
that quantity is observed (or the subject of a - Imprecision bias
determination). Itis an ideal valus which could - precision accuracy
ke arrived at only if all causes of measurement A
error were eliminated and the population was
infinite".

repeatability reproducibility

Analysis of variance
Models and hypothesis

N

snssmnnnnn el annnn(annasssnsnnns nannnnnnannnn

snnnnnnnnnn@uunnnnnnnnnnnns o @ GE@@ v
Mean pH —
models 48 49 5 51 52 53

c, &
Effect
models
Overall
mean

Introduction to Matlab + PCA and PLS - LIFE/KU

- 105 -

Analysis of variance
Sum-of-Squares

Breaking up the total Sum-of-Squares in its contributions

— ~ S5;,, (=error)

r N
A - SSError

—
wmsmnmnnne o weEan maE s REREREEE R EERRRE R
B T o Iy

m S8 catment (= between-error)

(= within-error)

Analysis of variance
Variance estimate from errors / replicates
/JL\ Pocled estimate of variance o2
's . N
)

with (N-a) degrees of freedom

I gl e e i (a-k.a. Mean Squares of the Error)

Introduction to Matlab + PCA and PLS - LIFE/KU - 106 -

Analysis of variance

Variance estimate from treatment

Variance estimate o2 from treatment averages
PR, 3 AP S+ S e with (a-1) degrees of freedom

1

Analysis of variance
The test statistic

A
r J_ B

~ ™~
snssssnsna s nnnnn ane | snssssnsns aasssnsnnnnnn

N TTTTITIITOI I If . e

If there is no difference in the treatment means f f f
we have two estimates of the model variance o2 ...

The answer is derived from ... and from these two estimates

comparing experimental with we derive the test statistic (F-test)
tabulated F-values

‘The question’

Introduction to Matlab + PCA and PLS - LIFE/KU

- 107 -

Example
The test statistic

A
S N
~ Y
---------'-*----.--“--------- sEssmEsEmEEEs
rrnrsss@ernissssieene @ @ ®::eeeee Ptest to compare the two means:

Tt

Classical: ‘H, rejected at a. = 5% level

‘F-distribution lookup table:

Better: ‘p < 1%’

Even better: ‘Assuming these two treatments had the same pH, the probability of

finding these particular 2 x 10 humbers is smaller than 1 percent!’

Analysis of variance
Critical F-values

(a) SSTreatme ntl(a' 1)

F
FO = Critical paint. For example:
2 Vl FCri Point F s leaves 5% probability in the tail.
(b) SSEWOIJ(N-a) | &) DEGREES OF FREEDOM FOR NUMERATOR
1 2 3 4 s 6 a 10 20 40 b
1 ;_.. sggs 4;.:u sg.:u aia s?.zz sg.gu 919 932 958 971 985
i i : .6 55.¢ 2 . 2 §17 625 S
(¢) a is users choice (C) 5o sitoiibaditmdirmlire il i
i 2} B 7 300 315 323 328 231 335 338 3. i ;
(d) Increasing for a Fu (d;);ﬂ 9W Gl6 G 9:m 93 53 a3 a4 o4 oM
. Fau | 185 100 102 192 183 | 193 184 194 194 195 193
(e) Decreasmg for A F.| 985 990 992 993 993 993 994 994 994 995 ﬁ&g
e) Fo¥998 999 999 999 099 999 899 993 999 999
iR 3 iR R g d o g e sl
5.4 .39 5. 5. S T L 16 8
o i e e R e A e i
Fam 341 308 205 287 282 27.9 275 272 267 284 261
Fou 167 149 141 137 135 133 131 129 126 125 124
§ 4 ;,, 1.2: z.gg i_g; :ﬂ :.g; z&a g,nl 208 208 208 208
e A 4. " 11 .05 4 .95 .80 376
Fh A S S I e ST
Fs 212 180 167 160 155 152 148 148 140 137 135
Fow 741 613 582 534 517 505 490 481 451 451 441
5 Fis 169 185 188 189 189 189 189 189 188 188 1?;
Fio 406 378 36 352 345 340 334 330 321 316 30
661 541 5.08 495 4.82 456 446 436

Unmarmmmm
-

8.
14.1

Introduction to Matlab + PCA and PLS - LIFE/KU - 108 -

Regression model
y=X.b

» e will limit ourselves to a so-called linear, additive models of the form:

y=by+ b X, +b,Xg+b.X,.Xg+ e

Explanation:

» y is dependent, x, and X are the independents

* b, is the offset or grant average

* b, and b, are the weight factors for the main effects A and B, respectively
* b, shows the importance for the interaction effect

» ¢ is the error, everything not modeled by the function

» linear (better: linear in the parameters): b.x, b.x2, b.x.y, etc.; but not xb, ebx
» additive: total effect y is sum of separate contributions

Regression model
y=X.b

= To find the b's we have to solve the Multiple Linear Regression (MLR) model:

y=Xb > Xy=X.Xb > XX 1.Xy=(X.X) ".(XX).b
| N = =l =™ =™K

> b= (X' X)Xy
- om ™

Introduction to Matlab + PCA and PLS - LIFE/KU - 109 -

Linear regression
Concept of least squares

Simple regression model y(i) = b, + b,.x(i) + e(i)

Assume independent variables Assume independent errors
y(1), ¥(2) ... y(n). e(1), e(2) ... e(n)

Mean = b, + b,.x(i) Mean =0

Variance = 0%, Variance = 02,

T

Y

Slope b1 = change in y that accompanies a
unit change in x

Offset b, = zero-response (non-response, ‘bias’)

K> Least squares = minimize the squared sum of

Linear Regression the residuals

Linear regression
Concept of least squares

Simple regression model y(i) = b, + b,.x(i) + e(i)
True (unknown) model y(i) = By + B,.X(i)

Statistical errors e(i) in the observation

Estimates b,'s, (app.) normally distributed: St asinet far (5.
o

1 s -
Y * Increase sample size n
Blg)= 5 End SE(E)E i - Reduce s.d. y(i) > e(i)
NS = Increase s.d. x(i) (feverage)
T T
¥ y
[)
X2 X2

Introduction to Matlab + PCA and PLS - LIFE/KU - 110 -

Linear regression

Equations

Sample correlation/determination coefficient

Multiple linear regression

Least squares model fitting

y{i) = by + by X (D) + by X5(D) + by X, (1).%,(0) + e(i)

Least squares model fit

min Z(y(i) — (b, + b, (i) + byx(0) + b, (). %,(1)))? = min (Ze(i)?)

X =

Linear Regression
(univariate)

More points (replicates) = belter estimates

X, =2
Multiple Linear Regression
(MLR; multivariate)

Introduction to Matlab + PCA and PLS - LIFE/KU

-111 -

Multiple linear regression
Model flexibility

T .o“:::'o.
y SRS
X2
y=b,+b,.x
Y = by + bx+ bx?
¥ = by + by +boX - b X, X
Regression
Balanced design
T T
¥ b

X =

Balancing is important for all modeling
methods, but especially so for
experimental designs with a small
number of observations

Introduction to Matlab + PCA and PLS - LIFE/KU

-112 -

Design Of Experiments
Interpolation and extrapolation

All models are local!
Positions of the design-points determine the ‘effective work range’

= Interpolation is usually safe, extrapolation should be handled with great care

= Selecting the design range (inference space) is important,
but usually intuition is a good guideline (see the paradox)
e.g. if you want to study behavior in room temperature: work range 15-25°C

= Effects have to ‘'span’ a factor; if nothing differs between set-points there is no model

Introduction to Matlab + PCA and PLS - LIFE/KU -113 -

